

A MEMBER OF THE ESTLIN GROUP

SINGLE AXIS SERVO DRIVE Conventional Version

USER MANUAL

About this Manual

Purpose

This manual provides the information required for the Selection, Wiring, Connection, Settings, Trial Operation, Tuning and Functions of the DX3 Series AC Servo Drive with pulse references (referred to as **DX3**).

Read and understand this manual to ensure correct usage of the product.

Terms and Abbreviations

Terms that may be used in this manual are defined as follows.

Term	Meaning	
Motor	The Rotary Servo Motor	
Drive	A Servo Drive, which is used for controlling the Rotary Servo Motor	
Servo System	A Servo Control System consisting of a master controller, drive, motor and peripheral devices	
Servo ON	Supplying power to the Motor	
Servo OFF	Not supplying power to the Motor	
Motion Perfect	The software tool for setting up and adjusting the drive, which is installed in the PC	

Abbreviations that may be used in describing EtherCAT or CANopen as well as their meanings are defined as follows.

Abbreviation	Meaning	
APRD	Auto-increment Physical Read	
APWR	Auto-increment Physical Write	
APRW	Auto-increment Physical Read/Write	
ARMW	Auto-increment Physical Read/Multiple Write	
BRD	Broadcast Read	
BRW	Broadcast Read/Write	
BWR	Broadcast Write	
CiA	CAN in Automation	
CoE	CAN application protocol over EtherCAT	
DC	Distributed Clocks	
EEPROM	Electrically Erasable Programmable Read Only Memory	
ESC	EtherCAT Slave Controller	
ESI	EtherCAT Slave Information	
ESM	EtherCAT State Machine	

Abbreviation	Meaning	
FMMU	Fieldbus Memory Management Unit	
FPRD	Configured Address Physical Read	
FPWR	Configured Address Physical Write	
FPRW	Configured Address Physical Read/Write	
FRMW	Configured Address Physical Read Multiple Write	
LRD	Logical memory Read	
LWR	Logical memory Write	
LRW	Logical memory Read/Write	
OD	Object Dictionary	
OP	Operational state of EtherCAT state machine	
PDO	Process Data Object	
PREOP	Pre-Operational state of EtherCAT state machine	
RxPDO	Receive PDO, i.e. the process data that the ESC will receive	
SAFEOP	Safe-Operational state of EtherCAT state machine	
SDO	Service Data Object	
SyncManager	Synchronization Manager	
TxPDO	Transmit PDO, i.e. the process data to be sent by the ESC	

Data types and scopes that may be used in this manual are defined as follows.

Abbreviation	Data type	Scope
INT8	Signed 8 bit	- 128~ + 127
INT16	Signed 16 bit	- 32768~ + 32767
INT32	Signed 32 bit	- 2147483648~ + 2147483627
UINT8	Unsigned 8 bit	0~255
UINT16	Unsigned 16 bit	0~65535
UINT32	Unsigned 32 bit	0~4294967295
STRING	String value	-

Symbols

The symbols that may be found in this document are defined as follows.

Symbol	Description	
DANGER	Indicates a hazard with a high level of risk that, if not avoided, will result in death or serious injury.	
Indicates a hazard with a medium or low level of risk which, if not avoided, could result in minor or moderate injury.		
	Indicates a potentially hazardous situation that, if not avoided, could cause equipment damage, data loss, and performance degradation, or unexpected results.	
IMPORTANT	Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.	
NOTE	Provides additional information to emphasize or supplement important points of the main text.	

The names of reverse signals (ones that are taken effect when low) are written with a forward slash (/) before the signal abbreviation. For example:

Parameters are referenced as PnXXX where XXX refers to a unique number. Some parameters have multiple functions encoded within a single parameter. For these parameters, sub-indices are used to reference the multiple functions.

For example:

- Pn112 Speed Feedforward is a single value without any sub-indices
- Pn000 Basic Function Selection 0 is made up of 4 sub-indexes describing different functions
 Pn000.0 Servo ON
 - Pn000.1 Forward Drive Prohibit Input (P-OT)
 - Pn000.2 Reverse Drive Prohibit Input (N-OT)
 - Pn000.3 Reserved parameter (Do not change)

Safety Precautions

General Precautions

- Never remove covers, cables, connectors, or optional devices while power is being supplied to the Drive.
- Never connect a three-phase power supply to the terminals U, V, and W of the driver.
- Wait for five minutes after turning the power supply OFF and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work.
 Never touch the power supply terminals after turning OFF the power supply while the CHARGE lamp is lit, because high voltages may still be present in the Drive.
 - Use a power supply that is appropriate for the product, check number of phases, voltage, frequency, and AC/DC type.
 - Connect the ground terminals on the Drive and Motor to ground poles according to local electrical codes.
 - Never damage, pull on, apply excessive force to, place heavy objects on, or pinch cables.
 - Never attempt to disassemble, repair, or modify the product.
 - Make sure that the device in an emergency stop state at any time when the product has been connected to the machine and ready for the operation.
 - Never touch inside the Drive.

• The Drive heat sinks, regenerative resistors, Motor, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components.

• For the control power supply, use a power supply device with double insulation or reinforced insulation.

- Never use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials.
- Never attempt to use a Drive or Motor that is damaged or that has missing parts.
- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.

• In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range.

- Always use a Noise Filter to minimize the effects of electromagnetic interference.
- Always use a Motor and Drive in one of the specified combinations.
- Never touch a Drive or Motor with wet hands.

Storage Precautions

- Follow all instructions on the packages, and never place an excessive load on the product during storage.
 - Never install or store the product in any of the following locations:
 - -- locations that are subject to direct sunlight.
 - -- locations that are subject to ambient temperatures exceed product specifications.
 - -- locations that are subject to relative humidity exceed product specifications.
 - -- locations that are subject to corrosive or flammable gases.
 - -- locations that are subject to dust, salts, or iron powder.
 - -- locations that are subject to water, oil, or chemicals.
 - -- locations that are subject to vibration or shock exceeds product specifications.
 - -- locations that are subject to radiation.

Installation Precautions

	 Install the Drive in a control cabinet that provides fire and electrical protection.
	 Install the Drive and Motor in a way that will support their mass.
	 Never install or store the product in any of the following locations: locations that are subject to direct sunlight. locations that are subject to ambient temperatures exceed product specifications. locations that are subject to relative humidity exceed product specifications. locations that are subject to corrosive or flammable gases. locations that are subject to dust, salts, or iron powder. locations that are subject to water, oil, or chemicals. locations that are subject to vibration or shock exceeds product specifications.
CAUTION	locations that are subject to radiation.
	 Never allow any foreign matter to enter a Drive or a Motor with a Cooling Fan.
	 Never cover the outlet from cooling fan of Drive or Motor.
	 Never step on or place a heavy object on the product.
	 Install the Drive in the specified orientation.

 Provide the specified clearances between the Drive and the control cabinet as well as with other devices.

Wiring Precautions

- Never bypass the electromagnetic contactor in the wiring between the Drive and the Motor.
- Firmly connect the power terminal to the Motor terminal.
- Provide an adequate air gap around the Drive installation.
- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- The wiring length of the encoder is up to 20 meters.
- Minimize the frequency that the power supply is turned ON and OFF.

Operation Precautions

- In order to prevent accidents, please test the Motor with no load (not connected to the Drive shaft).
- When starting to operate on the supporting machine, set the user parameters that match the machine in advance.
- Note that the signals for the Forward Drive Prohibit (P-OT) and the Reverse Drive Prohibit (N-OT) are disabled during JOG operation.

- When overtravel occurs, the power supply to the Motor is turned OFF and the brake is released. If the Motor is used to drive a vertical load, set the Motor to enter a 'zeroclamped' state after the Motor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling.
- If not using auto-tuning, make sure that an appropriate moment of inertia ratio is setup to avoid vibration.
- If an alarm occurs, reset it after troubleshooting the cause and ensuring safety.
- Never use the brake of the Motor for normal braking.

Maintenance Precautions

- Wiring and inspections must be performed only by qualified engineers.
- Disconnect all connections to the Drive when testing the insulation resistance of the Drive.
- Never use gasoline, thinner, alcohol, acid or alkaline detergent to avoid discoloration or damage to the casing.
- When replacing the Drive, transfer the user parameters from the replaced Drive to new Drive.
 - Never change the wiring while the power is on.
 - Never disassemble the Motor without permission.

Disposal Precautions

/ARNING

When disposing of the product, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labelling and warnings as required.

Contents

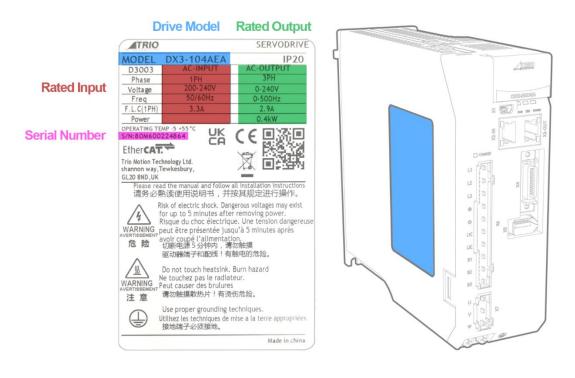
About this Manuali
Purposei
Terms and Abbreviationsi
Symbolsii
Safety Precautions iv
General Precautionsiv
Storage Precautions v
Installation Precautionsv
Wiring Precautionsv
Operation Precautionsvi
Maintenance Precautionsvi
Disposal Precautionsvi
Contentsvii
Chapter 1 DX3 Servo Drive1-1
1.1 Product Features1-1
1.2 Interpreting the Nameplate1-1
1.3 Model Designations
1.4 Part Names
1.5 Ratings and Specifications1-9
1.6 Dimensions 1-13
1.7 System Configuration 1-14
1.8 Part Numbers
Chapter 2 Installation2-1
2.1 Installation Precautions
2.2 Mounting Types and Orientation2-1
2.3 Mounting Hole Dimensions2-2
2.4 Mounting Interval2-4
Chapter 3 Wiring and Connecting
3.1 Precautions for Wiring
3.2 Basic Wiring Diagrams
3.3 Terminals Arrangements
3.4 Wiring the Power Supply to Drive
3.5 Wiring the Encoder
3.6 I/O Signal Connections
3.7 USB Communication Cable
Chapter 4 Basic Settings4-1
4.1 Panel Operator
4.2 Motion Perfect
4.3 Connection Setup
4.4 Drive Commissioning Screens 4-17
4.5 Basic Operation
Chapter 5 Applications Functions
5.1 Power Supply
5.2 Motor Rotation Direction
5.3 Overtravel Limit

Ę	5.4 Motor Stopping Methods	5-3
Ę	5.5 Holding Brake	5-5
5	5.6 Encoder Settings	5-7
Ę	5.7 IO Signal Allocation	5-11
Ę	5.8 Control Mode Selection	5-14
Ę	5.9 Speed Control	5-16
Ę	5.10 Position Control	5-22
Ę	5.11 Torque Control	5-32
5	5.12 Internally Set Speed Control	5-38
5	5.14 Selection of Control Mode Combinations	5-47
Ę	5.15 Torque Limit	5-50
5	5.16 Homing	5-53
5	5.17 Other Output Signals	5-59
Chapt	er 6 CANopen Communication	.6-1
6	6.1 Wiring and Connection	6-1
6	5.2 CANopen Overview	6-3
6	5.3 Unit Conversion	6-17
6	5.4 Position Control Function	6-21
6	5.5 Device Control	6-26
6	5.6 Control Mode	6-33
ϵ	5.7 Homing Mode	6-34
6	5.8 Profile Position Mode	6-45
6	5.9 Profile Velocity Mode	6-52
6	5.10 Profile Torque Mode	6-57
6	6.11 Interpolated Position Mode	6-60
6	5.12 Torque Limit Function	6-65
6	5.13 Digital Input /Output	6-66
6	5.14 Functions of TouchProbe	6-67
6	5.15 Soft Limit Function	6-72
Chapt	er 7 Trial Operation	.7-1
. 7	7.1 Preparations for Trial Operation	7-1
7	7.2 Inspections and Confirmations	7-1
7	7.3 Motor Operation without a Load	7-1
7	7.4 Motor Operation with a Load	7-5
7	7.5 Program Jogging	7-7
Chapt	er 8 Tuning	.8-1
-	3.1 Overview	
8	3.2 Tuning Modes	8-4
8	3.3 Tuning Process	8-5
8	3.4 Tuning Modes	8-7
8	3.5 Compensation	8-14
	3.6 Vibration Suppression	
	3.7 Gain Scheduling	
	3.8 Model Control Following	
	3.9 Load Identification	
	3.10 Motor Overload Duration & Cycle Times	
	er 9 MODBUS Communications	
-	9.1 Communication Wiring	

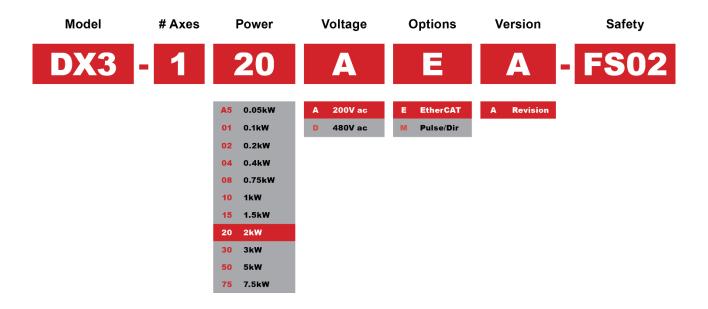
9.2 Setting Communication Parameters	9-1
9.3 MODBUS Communication Protocol	9-2
Chapter 10 Alarm Displays	
10.1 Alarm Classifications	10-1
10.2 Alarm Detailed	10-2
Chapter 11 Parameters	11-1
11.1 Interpreting the Parameter Lists	11-1
11.2 Parameters Detailed	11-2
Chapter 12 Object Dictionary	
Revision History	12-1

Chapter 1 DX3 Servo Drive

1.1 Product Features

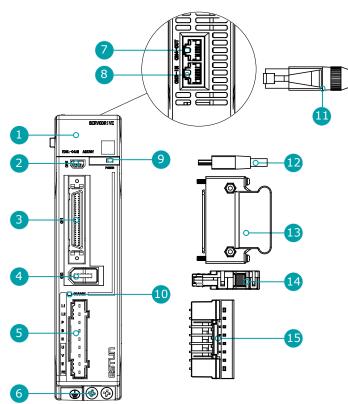

As a new single-axis AC servo product from Trio, DX3 is designed with its excellent performance and practical control functions to create a complete set of solutions with the best cost performance for customers.

Matching with the MX servo motors, compatible with mainstream controllers, it offers high-speed, high-precision, and high-performance machine solutions.


DX3 has the following outstanding features.

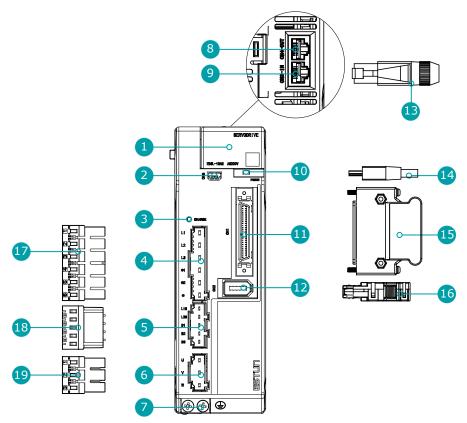
- CANopen supported
- Compact size
- Zero stacking gap installation
- 200 V ac from 50 W to 2 kW
- 400 V ac from 1.0KW to 7.5kW
- Compatible with MX servo motors
- 17-bit absolute encoder (magnetic) or 23-bit absolute encoder (photoelectric)
- Comprehensive tuning technology including Auto-tuning function, adaptive vibration suppression, friction compensation

1.2 Interpreting the Nameplate



1.3 Model Designations

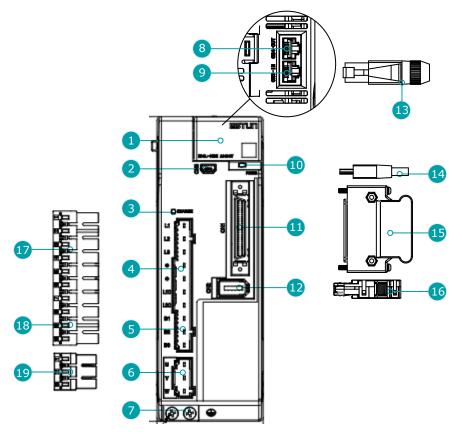
1.4 Part Names


Rated power from 50W to 400W (200VAC)

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings
2	USB Connector	Connects a computer for Motion Perfect 5.3 or above

No.	Name	Description
3	IO Signal Connector	Connects to sequence I/O signals
4	Encoder Connector	Connects to the encoder in the Motor
5	Main Circuit and Motor Connector	L1, L2: main power input terminals P, N: common DC bus terminals P, B: external regenerative resistor terminals U, V, W: motor power terminals PE: ground terminal
6	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
7	External communication output indicators	Output connector of the external communication cable Note: A dust plug has been mounted at the factory.
8	External communication input indicators	Input connector of the external communication cable Note: A dust plug has been mounted at the factory.
9	POWER Indicator Lamp	Lit while the control circuit power is being supplied
10	CHARGE Indicator Lamp	Lit while the main circuit power is being supplied. Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit in case the electric shock.
11	External communication Terminals	Standard RJ-45 terminal
12	USB Terminals	Standard Mini USB Type-B
13	IO Signal Terminals	Connection terminals for sequence IO signals
14	Encoder Terminals	Connection terminals for the encoder cable in the Motor
15	Main Circuit and Motor Terminals	Connection terminals for power input and motor power

Rated power from 750W to 2kW (200VAC)


NOTE

The figure above shows an example of a product with a rated power of 750W to 1kW. Products with a rated power of 1.5kW-2kW are similar in appearance and have the same components

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings
2	USB Connector	Connects a computer for Motion Perfect 5.3 or above
3	CHARGE Indicator Lamp	Lit while the main circuit power is being supplied. Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit, in case the electric shock.
4	Main Circuit Connector	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC terminals
5	Control Circuit Connector	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor terminals
6	Motor Connector	Connects to a Motor main circuit cable
7	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
8	External communication output indicators	Output connector of the external communication cable Note: A dust plug has been mounted at the factory.
9	External communication input indicators	Input connector of the external communication cable Note: A dust plug has been mounted at the factory.

No.	Name	Description
10	POWER Indicator Lamp	Lit while the control circuit power is being supplied
11	IO Signal Connector	Connects to sequence I/O signals
12	Encoder Connector	Connects to the encoder in the Motor
13	External communication Terminals	Standard RJ-45 terminal
14	USB Terminals	Standard Mini USB Type-B
15	IO Signal Terminals	Connection terminals for sequence IO signals
16	Encoder Terminals	Connection terminals for the encoder cable in the Motor
17	Main Circuit Terminals	The connection terminals for the main circuit power supply
18	Control Circuit Terminals	The connection terminals for the control power supply
19	Motor Terminals	The connection terminals for the Motor main circuit cable

Rated power from 1kW to 3kW (400VAC)


NOTE

The figure above shows an example of a product with a rated power of 1kW to 1.5kW. Products with a rated power of 2kW-3kW are similar in appearance and have the same components

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings.

No.	Name	Description
2	USB Connector	Socket for USB communication cable when using Motion Perfect 5.3 or above on PC.
3	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and motor terminals at this time to avoid electric shock.
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC connectors
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor connectors
6	Motor Power Connection Port	Socket for motor power cable.
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.
8	External Communication Output Connection Port	Socket for output signal connection of external communication cable.
9	External Communication Input Connection Port	Socket for input signal connection of external communication cable.
10	POWER Indicator Lamp	Light up when the control circuit is powered on.
11	IO Signal Connection Port	Socket for IO signal connectors.
12	Encoder Connection Port	Socket for the encoder connectors of the motor.
13	External Communication Connector	Standard RJ-45 terminal.
14	USB Connector	Standard Mini USB Type-B.
15	IO Signal Connector	Connector for IO signal cables.
16	Encoder Connector	Connector for motor encoder cables.
17	Main Circuit Connector	Connector for the drive's main circuit cables.
18	Control Circuit Connector	Connector for the drive control circuit cables.
19	Motor Power Cable Connector	Connector for the motor power cables.

Rated power from: 5kW to 7.5kW (400VAC)

No.	Name	Description			
1	Panel Operator	A module for Servo status displays and parameter settings.			
2	USB Connector	Socket for USB communication cable when using Motion Perfect 5.3 on PC.			
3	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and moto terminals at this time to avoid electric shock.			
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC connectors 			
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor connectors 			
6	Motor Power Connection Port	Socket for motor power cable.			
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.			
8	External Communication Output Connection Port	Socket for output signal connection of external communication cable.			
9	External Communication Input Connection Port	Socket for input signal connection of external communication cable.			
10	POWER Indicator Lamp	Light up when the control circuit is powered on.			
11	IO Signal Connection Port	Socket for IO signal connectors.			
12	Encoder Connection Port	Socket for the encoder connectors of the motor.			

No.	Name	Description		
13	External Communication Connector	Standard RJ-45 terminal.		
14	USB Connector	Standard Mini USB Type-B.		
15	IO Signal Connector	Connector for IO signal cables.		
16	Encoder Connector	Connector for motor encoder cables.		

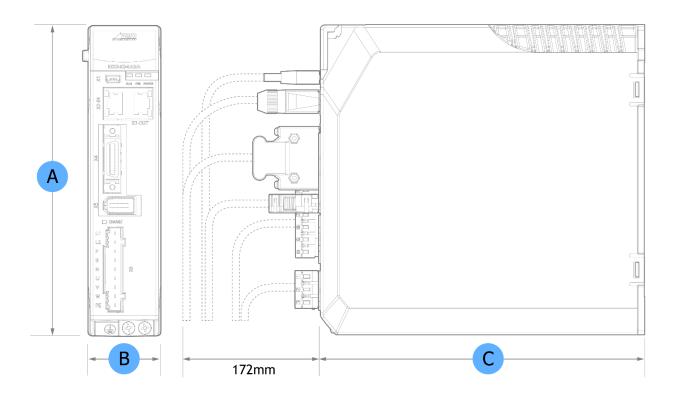
1.5 Ratings and Specifications

200VAC									
Drive Model: DX3-		1A5A	101A	102A	104A	108A	110A	115A	120A
Continuous Output Current [Arms]		0.9	1.1	1.5	2.9	5.1	6.9	8.2	11.3
Instantaneous Ma Current [Arms]	Instantaneous Maximum Output Current [Arms]		4.0	5.8	11.5	19.5	21.0	24.6	33.9
Power Supply Capacity [kVA]	Single-phase	0.2	0.3	0.6	1.2	1.9	2.6	4.0*	-
	Three-phase	-	-	-	_	1.6	2.0	3.0	3.5

*When operating 1.5kW unit from a single-phase supply, re-rate power to 1.2kW

400VAC							
Drive Model: DX3-	110D	115D	120D	130D	150D	175D	
Continuous Output	3.6	5.0	7.1	12.0	17.0	27.3	
Max Output Current [Arms]		10.9	17.7	24.7	37.8	53.0	70.7
Power Supply Capacity [kVA] Three-phase		1.8	2.8	3.5	5.0	8.2	12.0

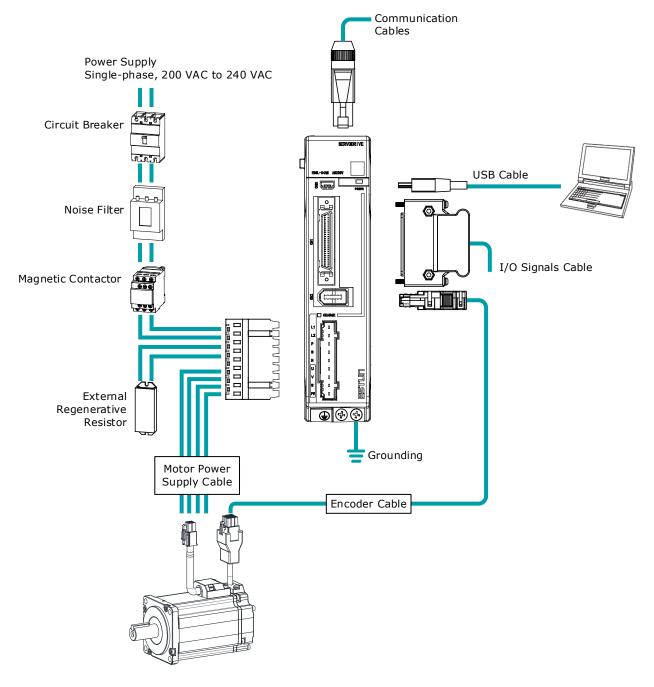
General Specification			Description	
Input Power	200VA	с	 Single-phase AC 200V~240V, -15%~+10%, 50Hz/60Hz 3-phase AC200V~240V, -15%~+10%, 50Hz/60Hz (rated power ≥ 0.75kW) 	
	400VA	С	3-phase AC380V~440V, -15%~+10%, 50Hz/60Hz	
Control Power	200VA	с	Single-phase AC 200V \sim 240V, -15% \sim +10%, 50Hz/60Hz	
Controt Power	400VA	с	Single-phase AC 200V \sim 440V, -15% \sim +10%, 50Hz/60Hz	
Control Method			SVPWM	
Feedback			Serial encoder: • 17-bit absolute encoder • 23-bit absolute encoder	
Environmental	Operation	Temperature	 -5℃ to 55℃ (-5℃ to 40℃ for zero stacking gap installation) 	
Conditions		Humidity	5% to 95% (with no condensation)	


General Specifica	ition		Description			
		Temperature	-20℃ to +85℃			
	Storage	Humidity	5% to 95% (with no condensation)			
	Protection	Class	All terminals are installed in place to meet IP20			
	Altitude		1,000 m or less			
	Vibration R	esistance	4.9m/s ²			
	Shock Resis	stance	19.6m/s ²			
	Power Syst	em	TN System			
Mounting			Base-mounted			
	Speed Cont	rol Range	1:5000			
			±0.01% of rated speed max. (For a load fluctuation of 0% to 100%)			
Performance	Coefficient Fluctuatior		0% of rated speed max. (For a load fluctuation of $\pm 10\%$)			
			$\pm 0.1\%$ of rated speed max. (For a temperature fluctuation of 25 $^\circ\text{C}\pm25^\circ\text{C}$)			
	Soft Start Time Setting		Os to 10s (Can be set separately for acceleration and deceleration.)			
	Analogue reference	Reference Voltage	±10VDC at rated torque (Variable setting range:±0 to 10VDC)			
		Voltage	Max. input voltage: ±12V			
Torque Control		Input Impedance	About 10MΩ or above			
		Circuit Time Constant	10µs			
	Torque selection	Inner setting	4 torque selections			
		Reference Voltage	±10VDC at rated speed (Variable setting range:±0 to 10VDC)			
	Analogue		Max. input voltage: ±12V			
	reference	Input Impedance	About 10MΩ or above			
Speed control		Circuit Time Constant	10µs			
	Speed selection	Rotation Direction Selection	With /P-CON signal			
		Inner setting	7 speed selections			
Position Control	Pulse reference	Туре	 Sign + pulse train CCW + CW pulse train 90° phase difference 2-phase (phase A + phase B) 			
		Form	Non-insulated linde driver (about + 5V), open collector			

General Specifica	tion		Description	
		Frequency	 ×1 multiplier: 4Mpps ×2 multiplier: 2Mpps ×4 multiplier: 1Mpps Open collector: 200Kpps Frequency will begin to decline when the duty ratio error occurs 	
	РСР	Inner setting	32 position contacts	
	Encoder Di Output	vided Pulse	Phase A, phase B, phase C: Line-driver output. Number of divided output pulses: Any setting is allowed.	
			Allowable voltage range: 24 VDC \pm 20% Number of input points: 10 (2 of them are high-speed optocoupler inputs, fixed as Touch Probe)	
	Input Signals		Input Signals are S-ON (Servo ON), P-CON (Proportional Control), ALM-RST (Alarm Reset), CLR (Position Error Clear), P-OT (Forward Drive Prohibit), N-OT (Reverse Drive Prohibit), P-CL (Forward External Torque Limit), N- CL (Reverse External Torque Limit).	
I/O Signals			Except TP1 and TP2, a signal can be allocated and the positive and negative logic can be changed.	
	Output Signals		Allowable voltage range: 5 VDC to 30 VDC	
			Number of output points: 4 (1 of them fixed for Servo Alarm)	
			Output Signals are TGON (Rotation Detection), ALM (Servo Alarm), SRDY (Servo Ready), COIN (Positioning Completion), PAO (Encoder Divided Pulse, Phase A), PBO (Encoder Divided Pulse, Phase B), PCO (Encoder Divided Pulse, Phase C).	
			Except ALM, a signal can be allocated and the positive and negative logic can be changed.	
	Interface		Personal computer (with Motion Perfect 5.3 or above)	
USB Communications	Communica Standard	ations	Conforms to USB2.0 standard (12 Mbps)	
External commun	ication (RJ4	5)	Serial communication standard, Modbus protocol	
Display			Five 7-segment LEDs	
Indicator Lamps			CHARGE, POWER	
Panel Operator			4 Buttons	
Regenerative Processing			• Rated power from 50W to 400W must connect an external regenerative resistor.	
			Rated power from 750W to 2kW are built-in.	
Protective Function	ons		Overcurrent, Overvoltage, Undervoltage, Overload, Regeneration Error, Overspeed, etc.	
Utility Functions			Alarm history, Jogging, Mechanical analysis, Load inertia identification, Auto-Tuning, etc.	

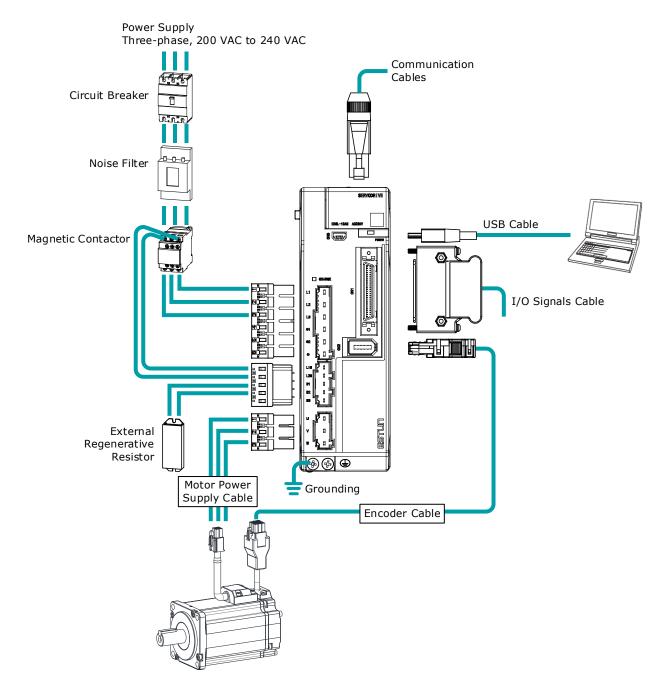
When operating from a single-phase power supply for the DX3-115AMA (rated power 1.5 kW), please de-rate to 1.2 kW

1.6 Dimensions

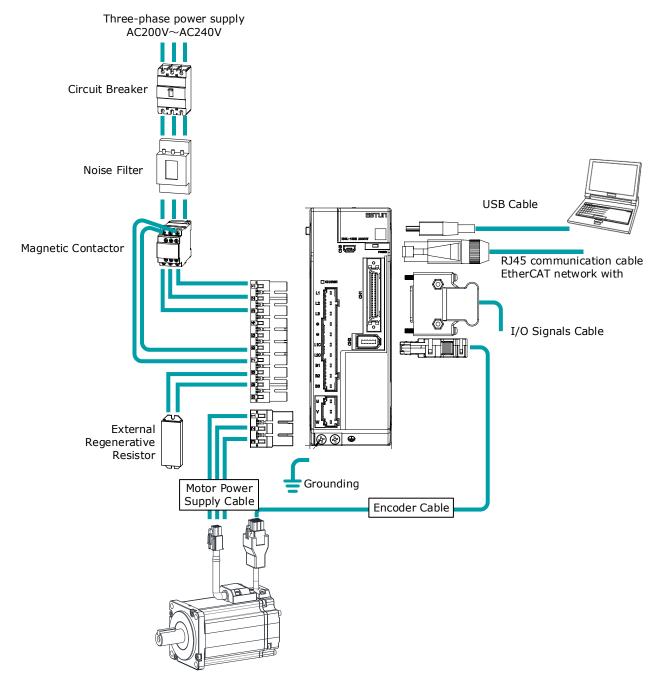

Product	Part #	Output Power	H (A)	W (B)	D©				
200V ac									
DX3-1A5AMA	D3020	50W							
DX3-101AMA	D3021	100W		40					
DX3-102AMA	D3022	200W		40					
DX3-104AMA	D3023	400W	172		180				
DX3-108AMA	D3024	750W		55					
DX3-110AMA	D3025	1kW							
DX3-115AMA	D3026	1.5kW		70					
DX3-120AMA	D3027	2kW		70					

Product	Part #	Output Power	H (A)	W (B)	D (C)				
400V ac									
DX3-110DMA	D3030	1kW		60					
DX3-115DMA	D3031	1.5kW	172	00	180				
DX3-120DMA	D3032	2kW	172	85	100				
DX3-130DMA	D3033	3kW		85					
DX3-150DMA	D3034	5kW	260	90	230				
DX3-175DMA	D3035	7.5kW	200	50	230				

1.7 System Configuration


Rated power from 50W to 400W

200VAC, single phase


Rated power from 750W to 2kW

200VAC, three phase

Rated power from 1kW to 7.5kW

400VAC, three phase

1.7.2 Minimum System Configuration

The minimum system configuration includes at least the following components.

Component Name	Description		
Power Supply	Control power supply (L1C, L2C) See 1.5 Ratings and Specifications for details on power supply		
	Mains power supply (L1, L2, L3) See 1.5 Ratings and Specifications for details on power supply		

Component Name	Description		
Circuit Breaker	Please use a Type C MCB to protect the power cord and to cut the circuit in the event of overcurrent.		
	The minimum current rating of the circuit breaker varies with the drive model.		
Noise Filter	Protection against external noise interference from the power cable, with the current rated at 10A or 20A.		
Magnetic Contactor	On/off control of the input circuit.		
External Regenerative Resistor	The minimum resistance value of the external regenerative resistor varies wi the drive model.		
Drive	DX3 Series Servo Drives.		
Motor	Suitable for use with MXL servo motors or MXM (at rated power \ge 1kW) servo motors.		
Controller	The device provided for servo applications, mechanical motion programming.		
PC software	Motion Perfect 5.3 or above software for PC.		
Cables	les Encoder cables, motor power cables, external communication cables, IO cables, etc.		

1.7.3 Peripherals Devices Specification

The table below shows details on regenerative resistor and circuit breaker requirements.

Model	Main circuit voltage	Built-in regenerative resistor	Min. allowable resistor value	Min. rated current of the circuit breaker
DX3-1A5AMA	Single-phase 200 VAC to 240 VAC	-	45Ω	4A(single-phase)
DX3-101AMA	Single-phase 200 VAC to 240 VAC	_	45Ω	4A(single-phase)
DX3-102AMA	Single-phase 200 VAC to 240 VAC	_	45Ω	4A(single-phase)
DX3-104AMA	Single-phase 200 VAC to 240 VAC	-	45Ω	4A(single-phase)
DX3-108AMA	Single-phase or three-phase 200 VAC to 240 VAC	50Ω∕60W	25Ω	10A(single- phase)/6A(3-phase)
DX3-110AMA	Single-phase or three-phase 200 VAC to 240 VAC	50Ω∕60W	25Ω	10A(single- phase)/6A(3-phase)
DX3-115AMA	Single-phase or three-phase 200 VAC to 240 VAC	40Ω ⁄ 80W	25Ω	20A(single- phase)/16A(3- phase)
DX3-120AMA	Three-phase 200 VAC to 240 VAC	40Ω ⁄ 80W	25Ω	16A(3-phase)

Model	Main circuit voltage	Built-in regenerative resistor	Min. allowable resistor value	Min. rated current of the circuit breaker
DX3-110DMA	Three-phase 380 VAC to 440 VAC	100Ω ⁄ 80W	65Ω	4A(3-phase)
DX3-115DMA	Three-phase 380 VAC to 440 VAC	100Ω ⁄ 80W	65Ω	6A(3-phase)
DX3-120DMA	Three-phase 380 VAC to 440 VAC	50Ω / 80W	40Ω	10A(3-phase)
DX3-130DMA	Three-phase 380 VAC to 440 VAC	50Ω / 80W	40Ω	16A(3-phase)
DX3-150DMA	Three-phase 380 VAC to 440 VAC	35Ω∕80W	20Ω	20A(3-phase)
DX3-175DMA	Three-phase 380 VAC to 440 VAC	35Ω∕80W	20Ω	25A(3-phase)

1.8 Part Numbers

Drive model	power	Motor model	Encoder cable	Power cable	
DX3-1A5AMA	50W	MXL-A5A0430LA			
DX3-101AMA	100W	MXL-01A0430LA MXL-01A0430TA	EC3S-I1724-RX-== (no battery) EC3S-A1724-RX-== (with battery)	EC3P-N8718-RX-nn (No brakes) EC3P-B8918-RX-nn (With brake)	
DX3-102AMA	200W	MXL-02A0630LA MXL-02A0430TA			
DX3-104AMA	400W	MXL-04A0630LA MXL-04A0630TA			
DX3-108AMA	750W	MXL-08A0830LA MXL-08A0830TA			
		MXL-10A0830LA MXL-10A0830TA	EC3S-I1924-RX-□□ (no battery) EC3S-A1924-RX-□□ (with battery)		
DX3-110AMA	1kW	MXM-09A1315LA MXM-09A1315TA		EC3P-N9314-RX-== (No brakes) EC3P-B9314-RX-== (With brake)	
DX3-115AMA	1.5kW	MXL-15A1030LB MXL-15A1030TB			
		MXM-13A1315LA MXM-13A1315TA			
DX3-120AMA	2kW	MXL-20A1030LB MXL-20A1030TB			

Drive model	power	Motor model	Encoder cable	Power cable	
		MXM-18A1315LA			
		MXM-18A1315TA			
DX3-110DMA	1kW	MXM-09D1315LA			
		MXM-09D1315TA			
		MXL-15D1030LB			
DX3-115DMA	1.5kW	MXL-15D1030TB			
DAS TISDAA	1.5.00	MXM-13D1315LA			
		MXM-13D1315TA		EC3P-N9314-RX-00 (No brakes)	
		MXL-20D1030LB	EC3S-I1924-RX-==(no battery) EC3S-A1924-RX-==(with battery)	EC3P-B9314-RX-== (With brake)	
DX3-120DMA	2kW	MXL-20D1030TB			
	2000	MXM-18D1315LA			
		MXM-18D1315TA			
		MXL-30D1330LA			
DX3-130DMA	3kW	MXL-30D1330TA			
		MXM-29D1815LA		EC3P-N8214-RX-III (No brakes)	
		MXM-29D1815TA		EC3P-B8214-RX-== (With brake)	
		MXL-40D1330LA		EC3P-N9314-RX-==(No brakes) EC3P-B9314-RX-== (With brake)	
		MXL-40D1330TA			
DX3-150DMA	5kW	MXL-50D1330LA			
		MXL-50D1330TA			
		MXM-44D1815LA		EC3P-N9219-RX-==(No brakes) EC3P-B9219-RX-== (With brake)	
		MXM-44D1815TA			
	7.5kW	MXM-55D1815LA			
DX3-175DMA		MXM-55D1815TA			
		MXM-75D1815LA		EC3P-N9211-RX-III (No brakes)	
		MXM-75D1815TA		EC3P-B9211-RX-== (With brake)	

 \square : The last two digits of the cable indicate the length (e.g. 05 for 5m).

Chapter 2 Installation

2.1 Installation Precautions

Installation Near Sources of Heat

• Implement measures to prevent temperature increases caused by external heat sources so that the ambient temperature of the Drive is within the specified limits.

Installation Near Sources of Vibration

• Install a vibration absorber on the installation surface of the Drive so that the Drive will not be subjected to vibration.

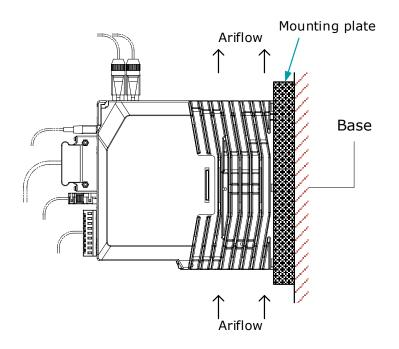
Other Precautions

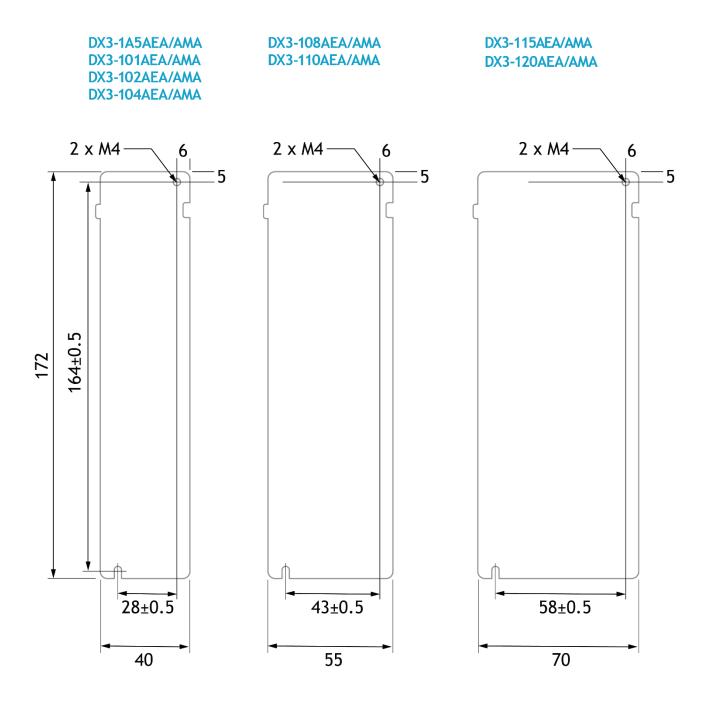
• Never install the Drive in a location subject to high temperatures, high humidity, water drops, cutting oil, excessive dust, excessive dirt, excessive iron powder, corrosive gases, or radioactivity.

2.2 Mounting Types and Orientation

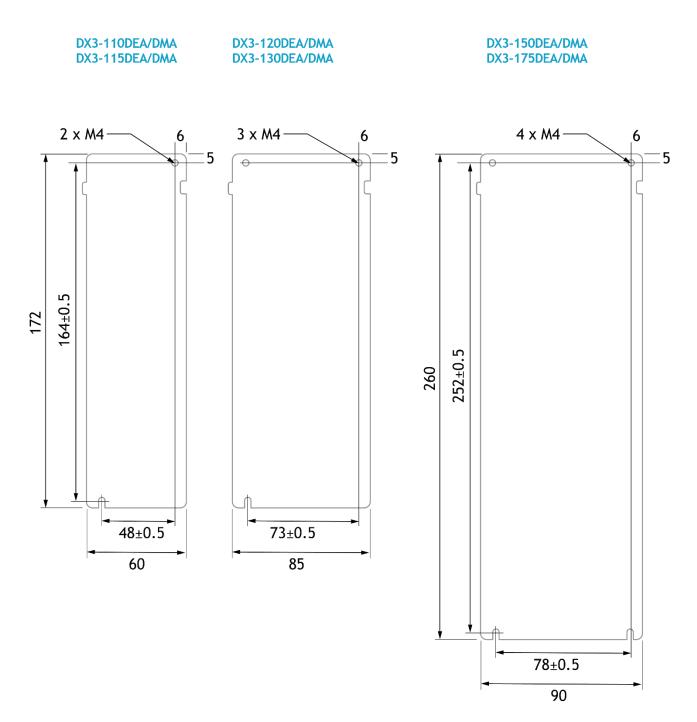
The Drives are based mounted and should be fitted to a non-painted metal surface. Mount the Drive vertically, as is shown in Figure 2-1.

Mount the Drives so that the Display Panel is facing toward the operator. Prepare two or three mounting holes for the Drive and mount it securely in the mounting holes (The number of mounting holes depends on the size of the Drive).




Figure 2-1 Base-mounted diagram

2.3 Mounting Hole Dimensions


Use all mounting holes to securely mount the Drive to the mounting surface.

To mount the Drive, use a screwdriver that is longer than the depth of the Drive.

Wiring diagram for mounting holes of 200VAC units.

Wiring diagram for mounting holes of 400VAC units

2.4 Mounting Interval

Installing One Drive in a Control Cabinet

When installing a single Drive use Figure 2-2 as a reference for free space around the installation.

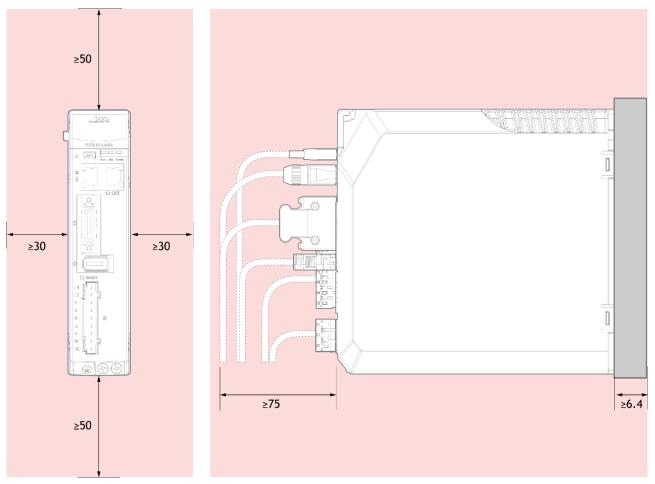


Figure 2-2 Installing a single $\ensuremath{\mathsf{Drive}}$ in a control cabinet

Installing multiple Drives in a Control Cabinet

When installing a multiple Drives use Figure 2-3 as a reference for free space around the installation.

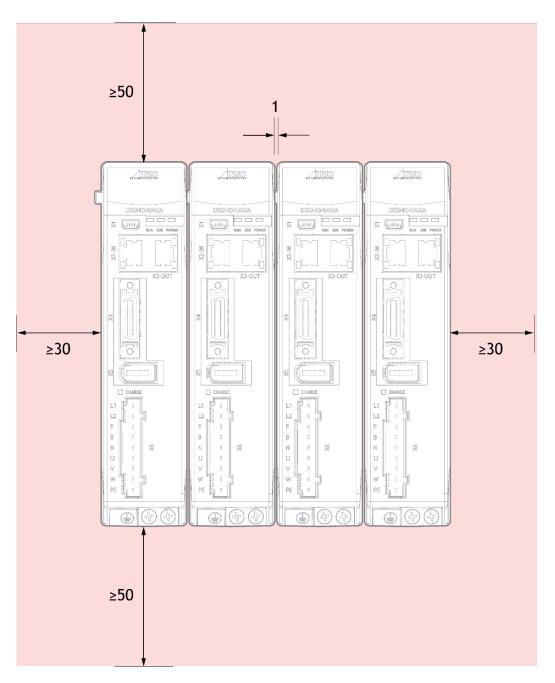


Figure 2-3 Installing multiple Drives in a control cabinet

The DX3 can be mounted so that the distance between adjacent Drives is 1mm.

The DX3 50D and 75D drives do not allow close mounting due to wiring, and the distance between drives is to be confirmed upon assembly of the cable, for which 80mm is the recommended.

Chapter 3 Wiring and Connecting

3.1 Precautions for Wiring

3.1.1 General Precautions

Never change any wiring while power is being supplied, in case a risk of electric shock or injury.

• Wiring and inspections must be performed only by qualified engineers.

- Check all wiring and power supplies carefully. Incorrect wiring or incorrect voltage application to the output circuits may cause shortcircuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.
- Connect the AC and DC power supplies to the specified Drive terminals.
- Wait for at least five minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Never touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the Drive.
- Observe the precautions and instructions for wiring and trial operation precisely as described in this document.
- Check the wiring to be sure it has been performed correctly. Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation.
- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- The main circuit cable of the Drive must be guaranteed to work normally at 75 °C.
- Observe the following precautions when wiring the Drive's main circuit terminals.
 - Turn ON the power supply to the Drive only after all wiring, including the main circuit terminals, has been completed.
 - If a connector is used for the main circuit terminals, remove the main circuit connector from the Drive before you wire it.
 - Insert only one wire per insertion hole in the main circuit terminals.
 - When you insert a wire, make sure that the conductor wire (e.g. whiskers) does not come into contact with adjacent wires.
- Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring.

 Use a molded-case circuit breaker or fuse to protect the main circuit. The Drive connects directly to a commercial power supply; it is not isolated through a transformer or other device. Always use a molded-case circuit breaker or fuse to protect the Servo System from accidents involving different power system voltages or other accidents.

 Install an earth leakage breaker. The Drive does not have a built-in ground fault protective circuit. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker.

- Never turn the power supply ON and OFF more than necessary.
 Use the Drive for applications that require the power supply to turn ON and OFF frequently. Such applications will cause elements in the Drive to deteriorate.
- After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline).

3.1.2 Countermeasures against Noise

The Drive is designed as an industrial device. It therefore provides no measures to prevent radio interference. The Drive uses high-speed switching elements in the main circuit. Therefore, peripheral devices may be affected by switching noise.

If the equipment is to be used near private houses or if radio interference is a problem, take countermeasures against noise.

Since the Drive uses microprocessors, it may be affected by switching noise from peripheral devices.

To prevent the noise from the Drive or the peripheral devices from causing malfunctions of any devices, take the following countermeasures against noise as required.

- Install the input reference device and Noise Filter as close to the Drive as possible.
- Always install a Surge Absorber for relays, solenoids, and Magnetic Contactor coils.
- Never place the following cables in the same duct or bundle them together. Also, separate the cables from each other by at least 30 cm.
- Never share the power supply with an electric welder or electrical discharge machine. If the Drive is placed near a high-frequency generator, install Noise Filters on the input side on the Main Circuit Power Supply Cable and Control Power Supply Cable even if the same power supply is not shared with the high-frequency generator. Refer to the section **Noise Filters** for information on connecting Noise Filters.
- Implement suitable grounding measures. Refer to the section Error! Reference source not found. <u>REF_Ref34657974 \h_ * MERGEFORMAT Grounding</u> for information on grounding measures.

Noise Filters

You must attach Noise Filters in appropriate places to protect the Drive from the adverse effects of noise. Figure 3-1 is an example of wiring for countermeasures against noise.

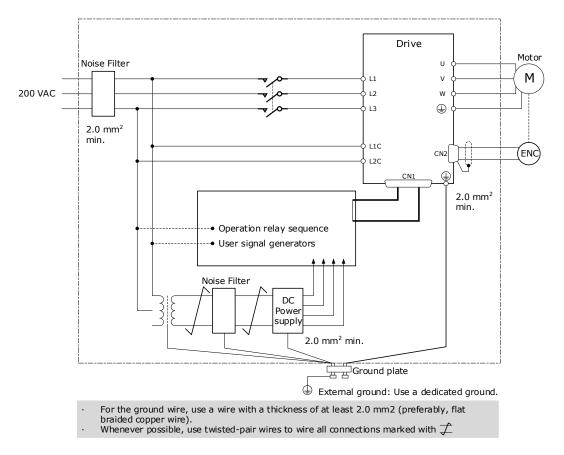
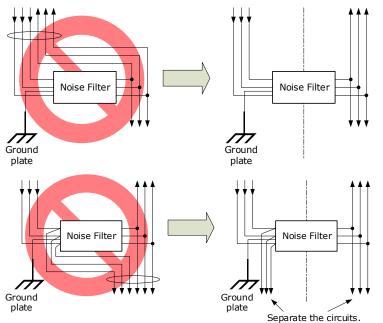
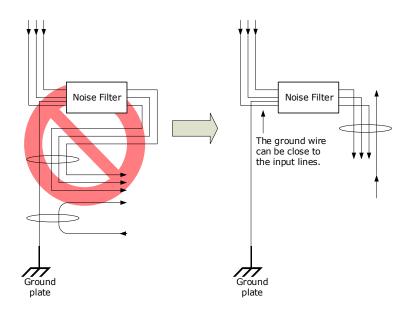
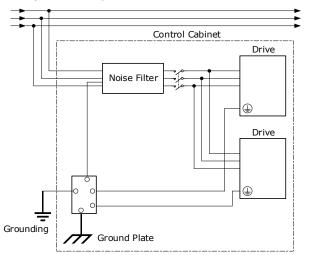



Figure 3-1 Wiring example for countermeasures against noise


Noise Filter Wiring and Connection Precautions

Always observe the following precautions when wiring or connecting Noise Filters.


• Separate input lines from output lines. Do not place input lines and output lines in the same duct or bundle them together.


• Separate the Noise Filter ground wire from the output lines. Do not place the Noise Filter ground wire, output lines, and other signal lines in the same duct or bundle them together.

• Connect the Noise Filter ground wire directly to the grounding plate. Do not connect the Noise Filter ground wire to other ground wires.

• If a Noise Filter is located inside a control panel, first connect the Noise Filter ground wire and the ground wires from other devices inside the control panel to the grounding plate for the control panel, then ground the plate.

3.1.3 Recommended EMC Filters

To comply with the limits based on IEC/EN 61800-3 second environment (C2) the Drive and Motor must be installed with an EMC/RFI filter. Recommended filters are:

Drive voltage	DX3 Power Range	EMC C2
200VAC	50W to 1.5kW	Schaffner FN3270H-10-44
	2kW	Schaffner FN3270H-20-44
400VAC	1kW~2 kW	Schaffner FN 3025HP-10-71
	3kW~5 kW	Schaffner FN 3025HP-10-71
	7.5kW	Shanghai Aerodev DNF51-3PH-3×20A

These filters have been tested with cable lengths of 3m and 20m

3.1.4 Grounding

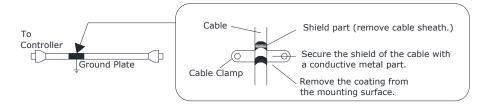
Implement grounding measures as described in this section. Implementing suitable grounding measures will also help prevent malfunctions, which can be caused by noise. Always use an unpainted backplane for electrical cabinets.

- Ground the Drive to a resistance of 100 m Ω or less.
- Be sure to ground at one point only.
- Ground the Motor directly if the Motor is insulated from the machine.

Motor Frame Ground or Motor Ground

If the Motor is grounded thought the machine, the switching noise current can flow from the main circuit of the Drive through the stray capacitance of the Motor. To prevent this always connect the Motor frame terminal (FG) or ground terminal (FG) of the Motor to the ground terminal on the Drive. Also, be sure to ground the ground terminal .

Noise on I/O Signal Cables

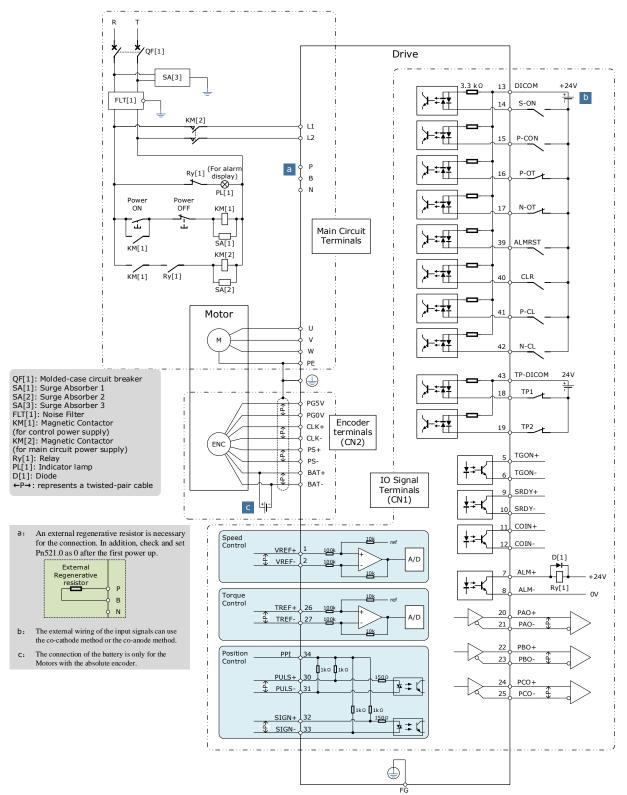

To prevent noise entering the I/O Signal Cable connect the shield of the I/O Signal Cable to the connector shell and ensure the shell is connected to ground.

If placing cables in metal conduits, ensure the conduit is connected to ground.

For all grounding, use a single grounding point.

Cable Fixing

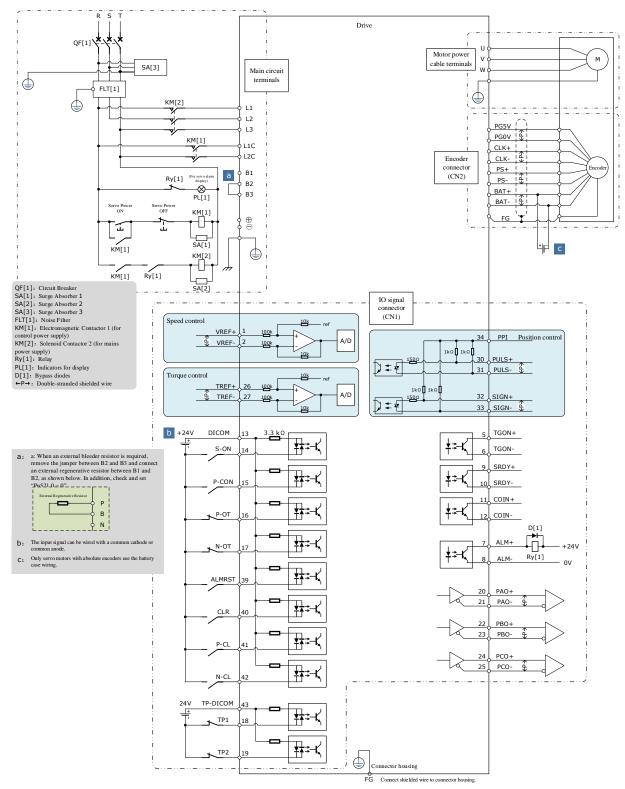
It is recommended that all cable shields are secured with a conductive metal clamp to the ground plate.



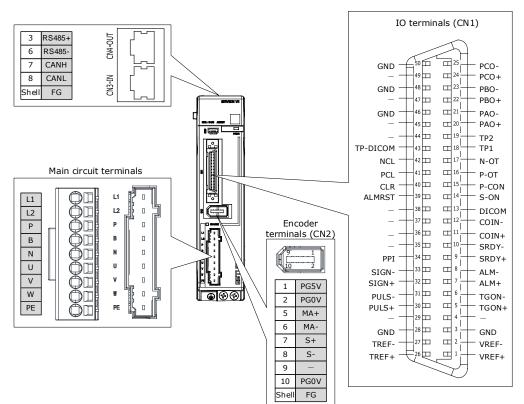
Ferrite Coils

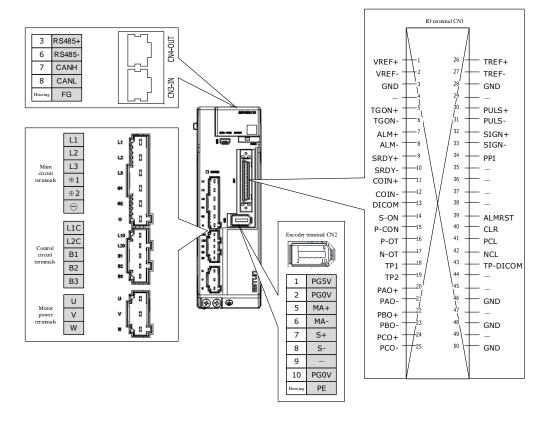
While ferrite coils can be used to solve application specific EMC issues, they should not be necessary for applications.

3.2 Basic Wiring Diagrams

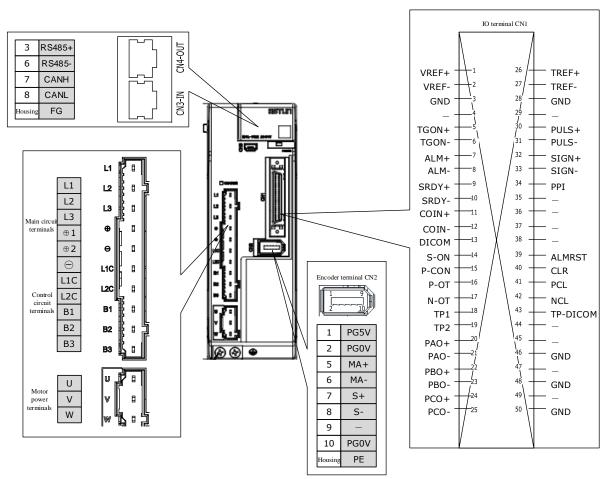

Rated power from 50W to 400W (200VAC)

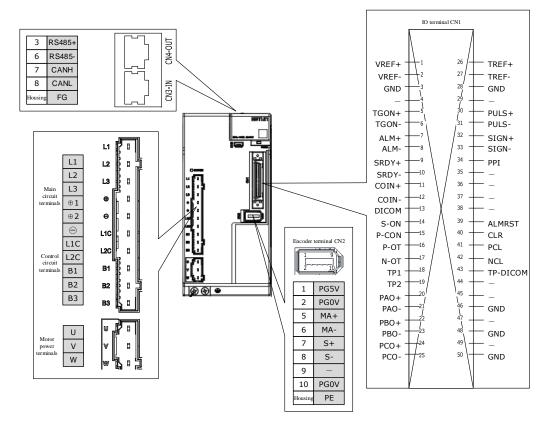
Rated power from 750W to 2kW (200VAC)

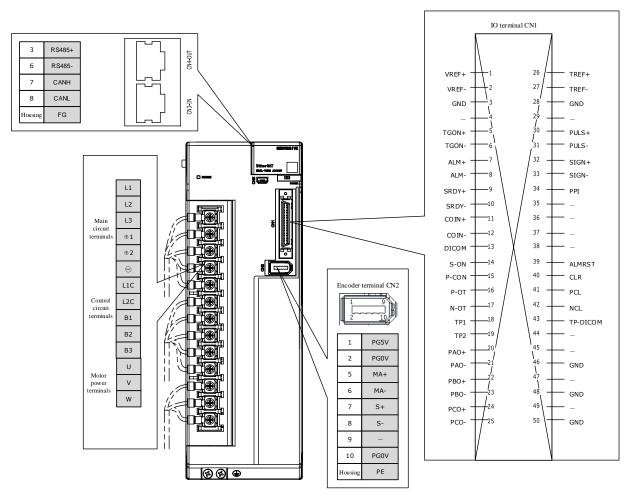

Rated power from 1kW to 7.5kW (400VAC)


Version: v1.1 (October 2023)

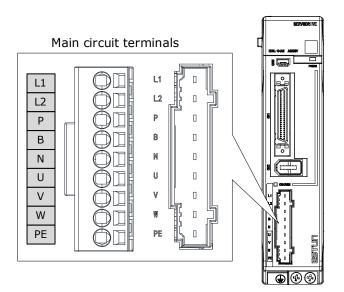
3.3 Terminals Arrangements


Rated power from 50W to 400W (200VAC_

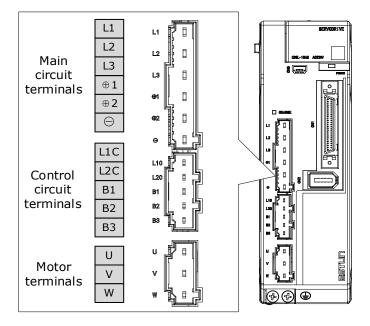

Rated power from 750W to 2kW (200VAC)


Rated power from 1kW to 1.5kW (400VAC)

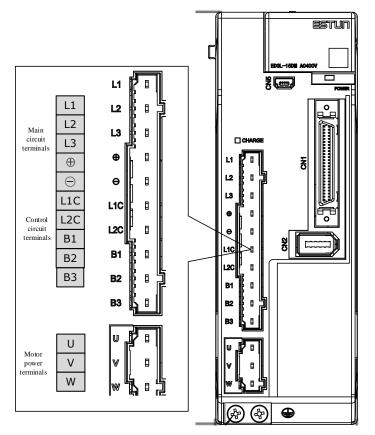
Rated power from 2kW to 3kW (400VAC)


Rated power from 5kW to 7.5kW (400VAC)

3.4 Wiring the Power Supply to Drive

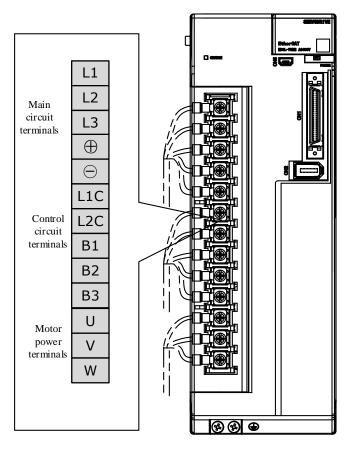

3.4.1 Terminals Arrangement

Rated power from 50W to 400W (200VAC)


Symbols	Name	Specifications and Reference	
L1, L2	Main circuit power supply input terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz	
Р, В	Regenerative Resistor terminal	Connects a regenerative resistor with a minimum resistance value of 45 ohm	
P, N	DC terminals	For the common DC bus, connect all P of Drive to the positive pole, and N to the negative pole.	
U, V, W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor	
PE	Ground terminal	Always connect this terminal to prevent electric shock.	

Rated power from 750W to 2kW (200VAC)

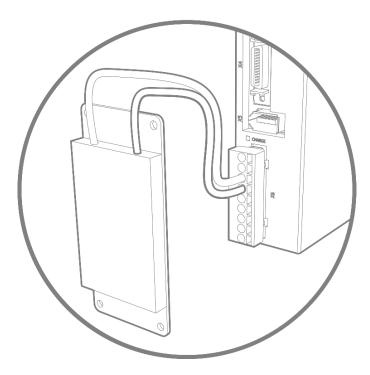
Symbols	Name	Specifications and Reference
L1, L2, L3	Main circuit power supply input terminals	Three-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz
⊕1, ⊕2	DC reactor terminals	For using a DC reactor, remove the short wiring, and connect a DC reactor between $\oplus 1$ and $\oplus 2$.
⊕2, ⊝	DC terminals	For the common DC bus, connect all $\oplus 2$ of Drive to the positive pole, and \bigcirc to the negative pole.
L1C, L2C	Control circuit terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz
B1, B2, B3	Regenerative Resistor terminal	 There is a short wiring between B2 and B3 at the factory. When the busbar capacitance is insufficient, remove the short wiring, and connect an external regenerative resistor between B1 and B2.
U, V, W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor
	Ground terminal	Always connect this terminal to prevent electric shock.


Rated power from 1kW to 3kW (400VAC)

Take for example a product with a power rating of 1kW~1.5kW. Products with power rating from 1.5kW to 3kW are similar in appearance and have the same components

Symbol	Name	Specifications
L1, L2, L3	Power supply input terminals	Three-phase 380 VAC to 440 VAC, -15% to +10%, 50Hz or 60Hz
\oplus	DC reactor connectors	Prior to delivery, the connection between $\oplus 1$ and $\oplus 2$ is in a shorted state. When using a DC reactor, a DC reactor is connected between $\oplus 1$ and $\oplus 2$.
Θ	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, $\oplus 2$ and \bigcirc of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single phase 200 VAC to 440 VAC, -15% to +10%, 50Hz or 60Hz
B1, B2, B3	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted. When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	Connect the U, V and W phases of the motor.
(L)	Grounding terminals	Connect the power supply earth terminal for earthing.

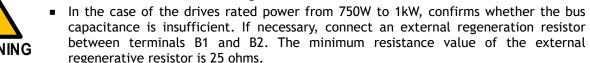
Rated power from 5kW to 7.5kW (400VAC)



Symbols	Name	Specifications
L1, L2, L3	Power supply input terminals	Three-phase 380 VAC to 440 VAC, -15% to +10%, 50Hz or 60Hz
Θ	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, \oplus and \bigcirc of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single phase 200VAC to 440VAC, -15% to +10%, 50Hz or 60Hz
B1, B2, B3	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted. When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	Connect the U, V and W phases of the motor.
÷	Grounding terminals	Connect the power supply earth terminal for earthing.
L1, L2, L3	Power supply input terminals	3-phase 380V~440V, -15%~+10%, 50Hz/60Hz

3.4.2 Wiring a Regenerative Resistor

Drive model	Rated power	Minimum value	Connection terminals
DX3-1A5AMA	50W		
DX3-101AMA	100W	450	D
DX3-102AMA	200W	45Ω	Р, В
DX3-104AMA	400W		
DX3-108AMA	750W	250	D4 D2
DX3-110AMA	1kW	25Ω	B1, B2
DX3-115AMA	1.5kW	100	D4 D2C
DX3-120AMA	2kW	10Ω	B1, B2C
DX3-110DMA	1kW	(50	D4 D2
DX3-115DMA	1.5kW	65Ω	B1, B2
DX3-120DMA	2.0kW	400	D4 D2
DX3-130DMA	3.0kW	40Ω	B1, B2
DX3-150DMA	5.0kW	200	D4 D2
DX3-175DMA	7.5kW	20Ω	B1, B2


The image below is an example of connecting an external regenerative resistor for the drives rated power from 50W to 400W.

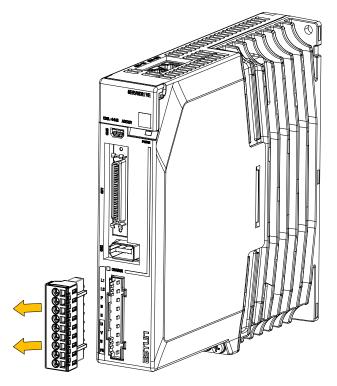
Connect the external regenerative resistor as following to avoid damaging the drive or malfunction.

 It is necessary to connect an external regenerative resistor for the drives rated power from 50W to 400W. The minimum resistance value of the external regenerative resistor is 45 ohms.

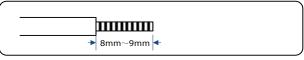
Never connect the external regenerative resistor between terminals P and N.

Never connect the external regenerative resistor between terminals B1 and B3.

- When an external regenerative resistor is connected, check and set Pn521.0 as 0 after the power up.
- Please check and confirm that the external regenerative resistor is mounted on noncombustible materials.

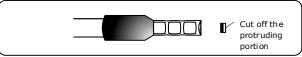

3.4.3 Wiring Procedure

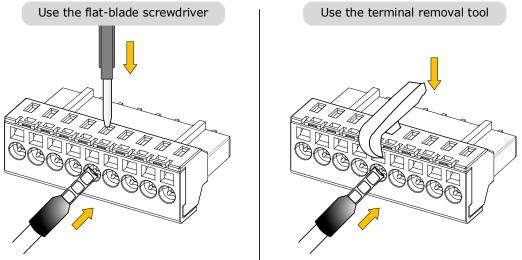
Prepare the following items before preparing the wiring for the Main Circuit Terminals and Control Circuit Terminals.


Required Item	Description
Flat-blade screwdriver or Terminal removal tool	 Flat-blade screwdriver: commercially available screwdriver with tip width of 3.0 mm to 3.5 mm Terminal removal tool: an accessory of the Drive
Cold pressed terminals	Sleeve type ferrule with cross-section from 1.5 mm ² to 2.5 mm ²
Wiring plier	Commercially available plier with crimping and stripping functions

Follow the procedure below to wire the Main Circuit Terminals and Control Circuit Terminals.

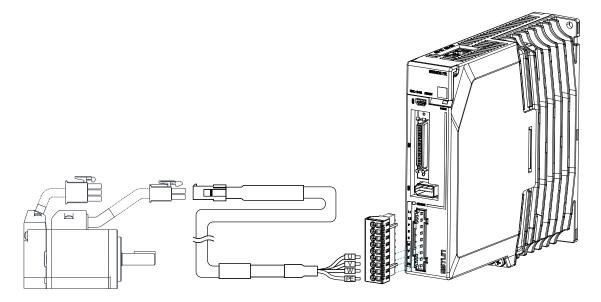
Step 1 Remove the Main Circuit Terminals and Control Circuit Terminals from the Drive.


Step 2 Peel off the sheath so that the conductor portion of the cable will protrude from the tip of the ferrule.


Step 3 Insert the cable into the ferrule (It should protrude 1 mm or more from the ferrule).

Step 4 Crimp the cable that has been inserted into the ferrule, and cut off the cable conductor portion protruding from the ferrule (The allowable protruding length after cutting should not be more than 0.5 mm).

Step 5 Use the flat-blade screwdriver or the terminal removal tool to press down the spring button corresponding to the terminal, and then insert the cable.


- Step 6 Insert the crimped cable into the connection terminals, and then pull out the tool.
- Step 7 Make all other connections in the same way.
- Step 8 To change the wiring, pull the cable out of the connection terminals.
 Use the flat-blade screwdriver to press down the spring button corresponding to the terminal, and then gently pull out the cable.
- Step 9 When you have completed wiring, attach connection terminals to the Drive.

The above wiring procedure is also applicable to the Motor Terminals.

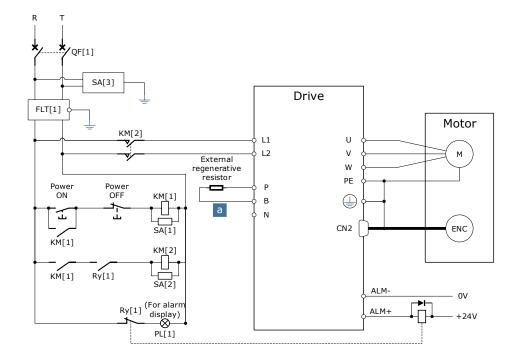
----End

3.4.4 Motor Connection Diagram

3.4.5 Motor Power Cable Description

See table in section 1.8 Part Numbers for details of power cables for specific motor part numbers.

3.4.6 Motor Power Input Wiring Specifications

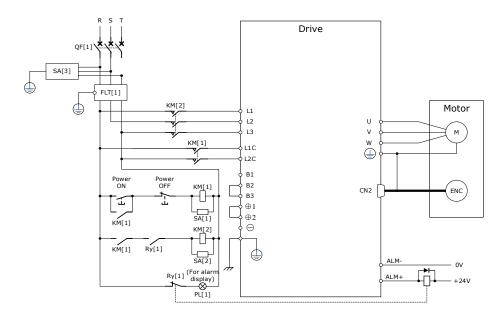

The power input wiring specification depends on the Motor model. The following table shows the recommended wire gauge for each Drive.

Drive model	Recommended	Recommended wire gauge			
	AWG	Cross-sectional area (mm ²)	Rated current (A)		
DX3-1A5AMA	14	2.075	8.2		
DX3-101AMA	14	2.075	8.2		
DX3-102AMA	14	2.075	8.2		
DX3-104AMA	14	2.075	8.2		
DX3-108AMA	13	2.627	10.4		
DX3-110AMA	13	2.627	10.4		
DX3-115AMA	12	3.332	13.1		
DX3-120AMA	12	3.332	13.1		
DX3-110DMA	14	2.075	8.2		
DX3-115DMA	14	2.075	8.2		
DX3-120DMA	13	2.627	10.4		
DX3-130DMA	13	2.627	10.4		
DX3-150DMA	10	5.26	20.8		
DX3-175DMA	9	6.63	26.2		

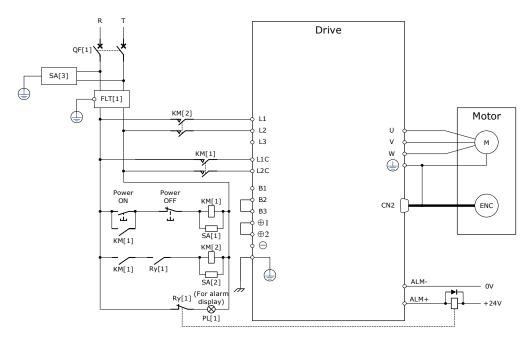
3.4.7 Power Input Wiring Example

Rated power from 50W to 400W (200VAC)

Single-phase 200 VAC to 240 VAC.


QF[1]: Molded-case circuit breakerSA[1]: Surge Absorber 1SA[3]: Surge Absorber 3FLT[1]: Noise FilterRy[1]: RelayPL[1]: Indicator lampKM[1]: Magnetic Contactor (for control power supply)KM[2]: Magnetic Contactor (for main circuit power supply)

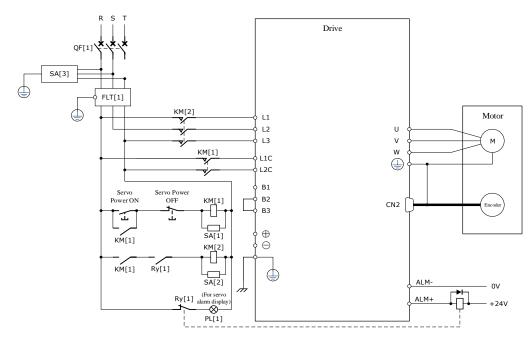
SA[2]: Surge Absorber 2


Rated power from 750W to 2kW (200VAC)

Three-phase 200 VAC to 240 VAC (Single-phase can be used up to 1.5kW)

The following figure shows the wiring example for using the three-phase AC input power.

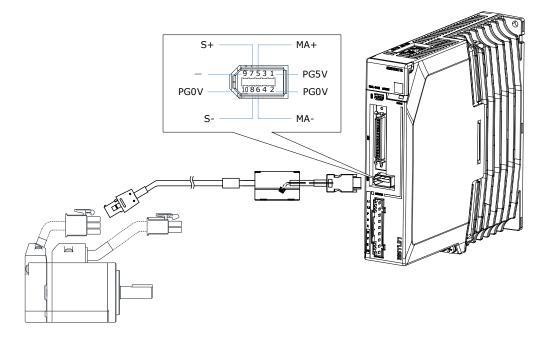
The following figure shows the wiring example for using the single-phase AC input power.



QF[1]: Molded-case circuit breaker SA[3]: Surge Absorber 3 Ry[1]: Relay SA[1]: Surge Absorber 1 FLT[1]: Noise Filter PL[1]: Indicator lamp SA[2]: Surge Absorber 2

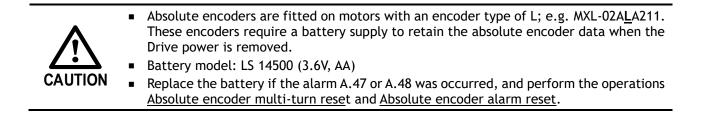
KM[1]: Magnetic Contactor (for control power supply)KM[2]: Magnetic Contactor (for main circuit power supply)

Rated power from 1kW to 5kW (400VAC

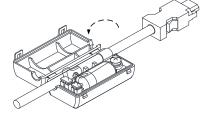

Three-phase 380 VAC to 440 VAC

QF[1]: Circuit breakerSA[1]: Surge Absorber 1SA[2]: Surge Absorber 2SA[3]: Surge Absorber 3FLT[1]: Noise FilterKM[1]: Magnetic Contactor (for control power supply)KM[2]: Magnetic Contactor (for main circuit power supply)Ry[1]: RelayPL[1]: Indicator lamp for display

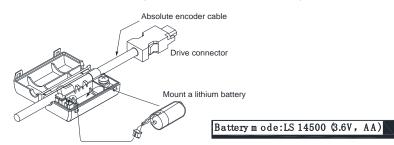
3.5 Wiring the Encoder


3.5.1 Connection Diagram

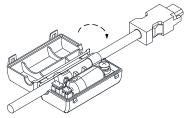
3.5.2 Encoder Cable Description


The encoder cable depends on the Motor model. See table in section 1.8 Part Numbers for details of encoder cables for specific motor part numbers.

3.5.3 Battery Case Connection



Follow the instructions below to install or replace the battery case.


- Step 1 Turn ON only the control power supply to the Drive.
- Step 2 Open the cover of the battery case.

Step 3 Remove the old battery and mount a new battery.

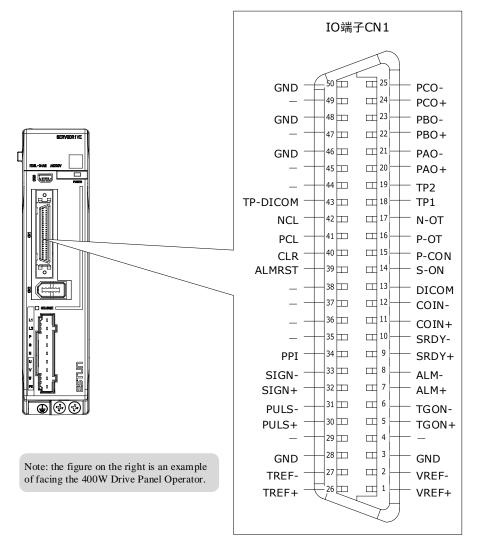
Step 4 Close the cover of the battery case.

Step 5 Repower up the Drive.

Step 6 Reset the Alarms.

	\square
5	
NO	TE

• Perform the Fn011 and Fn010 from the Panel Operator to reset the alarms, for details, see the section Error! Reference source not found. and Error! Reference source no t found.


 Also, you can reset the alarms by Motion Perfect V5.3 or above, for details, see Motion Perfect Help Manual

Step 7 Make sure the alarms have been cleared and the Drive operates normally.

----End

3.6 I/O Signal Connections

3.6.1 Signal Diagram

• The signal definitions for the IO signals of all drives are the same.

 The factory setting of all I/O signals is for remote operation. Special functionals can be assigned using Pn509, Pn510, and Pn511, see the section <u>5.7 IO Signal Allocation</u> in detail.

3.6.2 Pin Layout

NOTE

Pin	Name	Туре	Function	
1	VREF+	Input	Speed reference differential input: +10V	
2	VREF-	Input	Speed reference differential input: ±10V.	
5	TGON+	Output	Noter relation tests (N) when the motor speed eveneds the set value	
6	TGON-	Output	Motor rotation test: ON when the motor speed exceeds the set valu	
7	ALM+	Output	Servo alarm: OFF when an abnormal condition is detected.	

Pin	Name	Туре	Function	
8	ALM-	Output		
9	SRDY+	Output	Servo READY: When the control circuit and the main circuit are	
10	SRDY-	Output	turned on, it will be ON if there's no alarm and no overtravel for servo.	
11	COIN+	Output	Positioning completed: ON after positioning is completed (deviation	
12	COIN-	Output	pulse reaches the set	
13	DICOM	Common	I/O signal power suppl supply. Range of operating vol	y, to be supplied by user with a DC 24V power Itage: DC 24V±20%
14	S-ON	Input	Servo ON: Motor becor	nes the turn-on state.
			Select the function of	this signal by parameter settings.
			Proportional Control Switch	Change the speed ring control mode from PI control to P control when it is ON.
15	P-CON	l Input	Rotation Direction Switch	Use this signal to switch the direction of rotation when the function "Set speed selection internally" is used.
			Control Mode Switch	Switch the control method
			Zero Clamp	When [Speed Control] is ON, the command speed is "0".
			Command Pulse Prohibited	When [Position Control] is ON, the command pulse input will be stopped.
16	P-OT	Input	Forward Rotation Prohibited Overtravel prohibited: Stop the servo motor	
17	N-OT	Input	Reverse Rotation Prohibited	it is OFF.
18	TP1	Input		
19	TP2	Input	TouchProbe Input	
43	TP- DICOM	Common	The power supply for the input signal of the TouchProbe is to be supplied by user (DC 24V mains supply). Range of operating voltage: DC 24V±20%	
20	PAO+	Output		
21	PAO-	Output	Encoder pulse dividing	pulse output Phase A
22	PBO+	Output		
23	PBO-	Output	Encoder pulse dividing	pulse output Phase B
24	PCO+	Output	Frankland I. S. Martin	
25	PCO-	Output	Encoder pulse dividing	pulse output Phase C
26	TREF+	Input	Tarana	
27	TREF-	Input	Torque reference input. Max input voltage: ±12V	
30	PULS+	Input	Form of pulse input:	
31	PULS-	Input	• Symbol + pulse train	

Pin	Name	Туре	Function
32	SIGN+	Input	• CCW+CW
33	SIGN-	Input	• Two-phase orthogonal pulse (90° phase difference)
34	PPI	Input	Power supply for open collector command (2K $\Omega/0.5W$ resistor is preset inside of the servo drive)
39	ALMRST	Input	Alarm reset: Release the servo alarm state.
40	CLR	Input	Position deviation pulse clear: to clear the position deviation pulse during position control.
41	PCL	Input	Forward Torque Limit
42	NCL	Input	Reverse Torque Limit
3,28,46,4 8,50	GND	Common	Signal Grounding
Other	-	_	Reserved

3.6.3 Wiring Description

Input Signals Wiring

The input signals of the Drive are divided into two groups, and the details are as follows.

Taking the input signal P-OT as an example, Figure 3-2 shows the connection diagram by using an external 24 VDC power supply, and the wiring of other input signals wiring is the same as it.

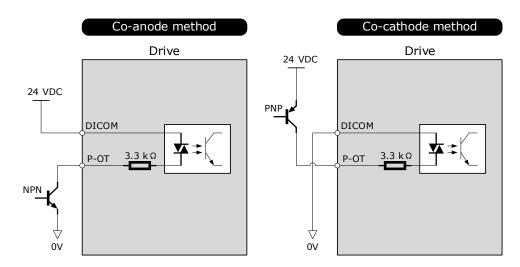


Figure 3-2 P-OT wiring diagram

You can assign the input signals by Pn509 and Pn510. For the input signal allocation, see the section 5.7 <u>IO</u> <u>Signal Allocation</u>.

Output Signals Wiring

Taking the output signal TGON as an example, Figure 3-3 shows the connection diagram for using the optocoupler or relay, and the wiring of other output signals wiring is the same as it.

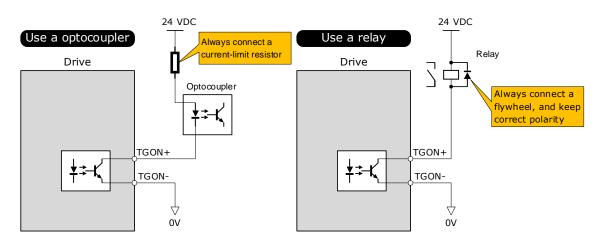
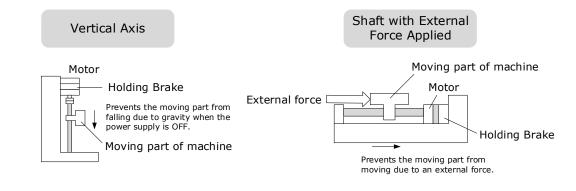


Figure 3-3 TGON wiring diagram


The maximum permissible voltage and current of the optocoupler output circuit inside the servo drive are as follows: Maximum voltage: 30 VDC Maximum current: DC 50 mA

You can assign the output signals by Pn511. For the output signal allocation, see the section 5.7 <u>Output</u> Signal Allocations.

3.6.4 Holding Brake Wiring

A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that the moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine. The holding brake is used in the following cases.

The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.
 Keep the input voltage at least 21.6 V to make the brake work.
 The wiring of the brake signal has no polarity, please prepare a 24 VDC external power supply.
 Cable of 0.5mm² or above is recommended.

Taking the drives rated from 50W to 400W as an example, Figure 3-4 shows the connection diagram of the holding brake.

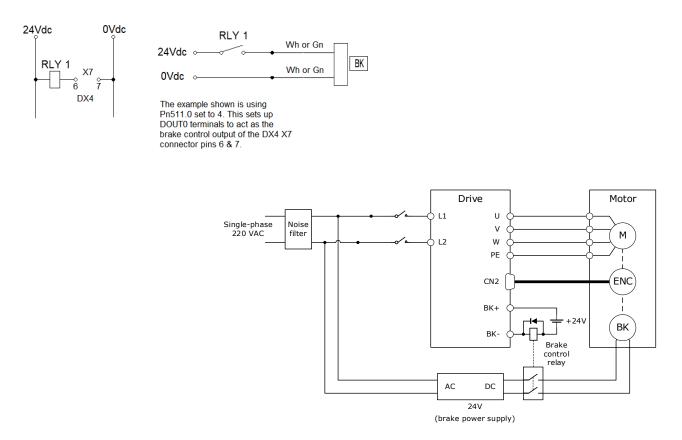


Figure 3-4 Holding brake wiring diagram

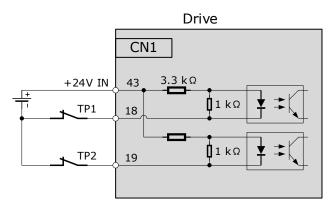
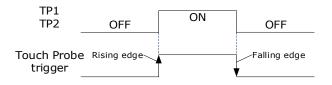
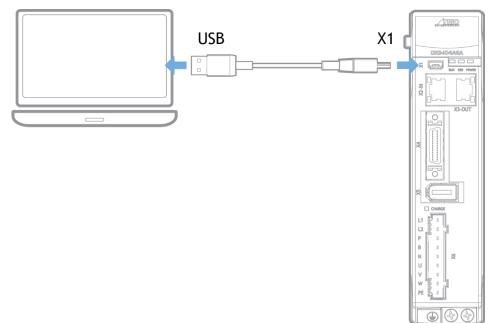

Motor Model	Voltage (V)	Holding torque (Nm)	Brake time (ms)	Release time (ms)	Power (W)
MXL-A5A/01A	24V±10%	≤0.32	20	50	4
MXL-02A/04A	24V±10%	≤1.5	25	50	7.4
MXL-08A/10A	24V±10%	≤3.2	20	70	9.6
MXL-15A/20A MXL-15D/20D	24V±10%	≤8	20	100	17.6±10%
MXL-30A MXL-30D/40D/50D	24V±10%	≤20	40	100	23±10%
MXM-09A/13A/18A MXM-09D/13D/18D	24V±10%	≤20	40	100	23±10%
MXM-29D/44D	24V±10%	≤44	25	150	36±10%
MXM-55D/75D	24V±10%	≤72	25	200	36±10%

Table 3-1	lists brake	specifications	for each	Motor	matched with DX3.
Table J-1	lists brake	specifications	TOT Cach	motor	matched with DAJ.


Table 3-1 Brake specifications

3.6.5 Touch Probe Wiring

You shall only use the terminals CN1-18 (TP1) and CN1-19 (TP2) for Touch Probe input signal, which has been allocated at factory. The following figure shows the example diagram for the connection.


The timing sequence between input signals and trigger is as shown below.

3.7 USB Communication Cable

Connects your PC to a Drive with a USB Communication Cable, to make the online operation of Motion Perfect 5.3 or above.

Connection Diagram

Cable Description

You can purchase the **USB Communication Cable** provided by TRIO, or you can purchase the commercially available products yourself.

The plug connected to your PC is USB Type-A, and the plug connected to the Drive is Mini USB Type-B.

Chapter 4 Basic Settings

You can implement the functions of parameter setting, display, monitoring, alarm, adjustment, etc. of the Drive in the following two ways.

- Use the Panel Operator of the Drive
- Use the Motion Perfect 5.3 or above (Recommended)

4.1 Panel Operator

4.1.1 Key Names and Functions

There is a Panel Operator on the front of the Drive, as is shown in Figure 4-1.

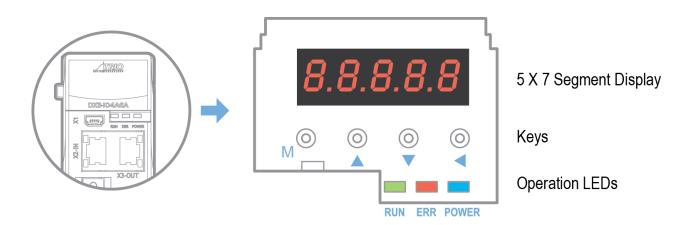


Figure 4-1 Diagram of Panel Operator

The names and functions of the keys on the Panel Operator are as follows.

Key	Functions	
м	Press [M] key to select a basic mode, such as the status display mode, utility function mode, parameter setting mode, or monitor mode.	
	Press [▲] Key to increase the set value.	
▼	Press [▼] Key to decrease the set value.	
•	 Data setting key To display parameter setting and set value. To shift to the next digit on the left. 	

4.1.2 Basic Mode Selection

The basic modes include Status Display Mode, Parameter Setting Mode, Utility Function Mode, and Monitor Mode.

Select a basic mode with [M] key to display the operation status, set parameters and operation references, as is shown in Figure 4-2.

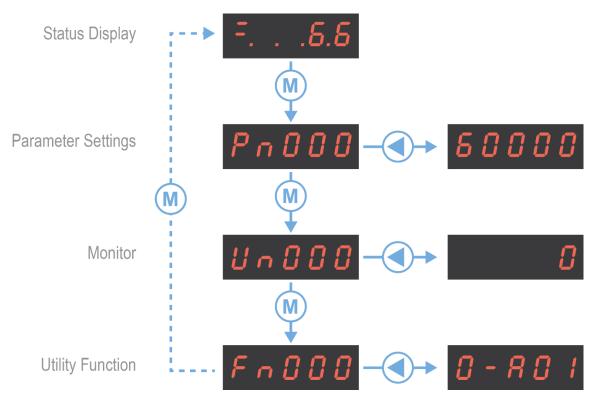


Figure 4-2 Select a basic mode.

4.1.3 Status Display Mode

Power ON the Drive and wait for a while, the Panel Operator will initially display the Servo Status.

The information displayed by the status is divided into two parts as Figure 4-3:

- The first two digits are called **Bit Data**, what indicates the signal states during the operation of Drive.
- The last three digits are called **Code**, what indicates the operation states of Drive.

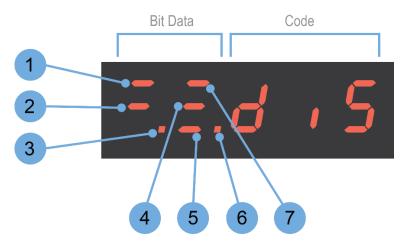


Figure 4-3 Status Display

The display meaning of each segment on Bit Data are shown in Table 4-1 , and they have different meanings under Speed or Torque Control Mode and Position Control Mode

No	Speed Control/Torque Control		Position Control Mode		
NO	Meaning	Description	Meaning	Description	
1	Speed Coincidence (VCMP)	Lit when the difference between the Motor speed and reference speed is the same as or less than the value set in Pn501 (Default setting is 10 rpm). Always lit in Torque Control Mode.	Positioning Completion (COIN)	Lit if error between position reference and actual Motor position is below pre-set value in Pn500 (Default setting is 10 pulses).	
2	Servo OFF	Lit when servo is off. Not lit when servo is on.	Servo OFF	Lit when servo is off. Not lit when servo is on.	
3	Control Power ON	Lit when Drive control power is ON.	Control Power ON	Lit when Drive control power is ON.	
4	Speed Reference Input	Lit if input speed reference exceeds the value pre-set in Pn503 (Default setting is 20 rpm).	Reference Pulse Input	ON when the reference pulse is being input. OFF when no reference pulse is input.	
5	Torque Reference Input	Lit if input torque reference exceeds pre-set value (10% rated torque is standard setting).	Deviation Counter Clear Signal Input	Lit when deviation counter clear signal is input.	
6	Power Ready	Lit when main power supply circuit is normal.	Power Ready	Lit when main power supply circuit is normal.	
7	Rotation Detection (TGON)	Lit if Motor speed exceeds the value pre-set in Pn503 (Default setting is 20 rpm).	Rotation Detection (TGON)	Lit if Motor speed exceeds the value pre-set in Pn503 (Default setting is 20 rpm).	

Table 4-1 Display meaning of each segment on Bit Data

The display meanings of Code are shown in Table 4-2.

Code	Meaning	
	Servo initialization failed (check the encoder connection)	
<u>5</u>	Servo OFF (Motor Power OFF)	
	Servo Ready	
	Run Servo ON (Motor Power ON)	

Code	Meaning
F	Quick Stop State
FLE	Servo Alarm State
<u>5</u> <i>RF</i>	Safe State
	Forward Drive Prohibited
F. nat	Reverse Drive Prohibited
at	(Forward and Reverse) Overtravel State
	Alarm Number Display

Table 4-2 Display meanings of Code

When the Drive is in Servo Alarm State, check and correct the fault according to the Alarm Number Display, and then, you can press $[\blacktriangleleft]$ key to try to clear the current alarm.

4.1.4 Parameter Setting Mode

Functions can be selected or adjusted by setting parameters. There are two types of parameters.

- Function Parameters: the functions allocated to each digit of the Panel Operator can be selected.
- Adjustment Parameters: a parameter is set to a value within the specified range of the parameter.

For a description of the parameter settings, please refer to the section Chapter 1

Parameters.

Function Parameters Setting

The example below shows how to change parameter Pn003 (Application Function Selections 3) from **0000** to **1032.**

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn003.

Step 3 Press $[\blacktriangleleft]$ key to display the current value of Pn003.

Step 4 Press and hold [] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

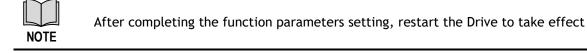
Decimal point is flashing

Step 5 Press $[\blacktriangle]$ key twice, changing the value of the 5th digit from 0 to 2.

Step 6 Press [◀] key once, moving the flashing decimal point to the 4th digit.

Step 7 Press $[\blacktriangle]$ key three times, changing the value of the 4th digit from 0 to 3.

Step 8 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 2nd digit.



Step 9 Press $[\blacktriangle]$ key once, changing the value of the 2nd digit from 0 to 1.

Step 10 Press and hold [] key for 1 second or more to return to the display of the Pn003 parameter value or press the [M] key to return to the display of the Pn003.

----End

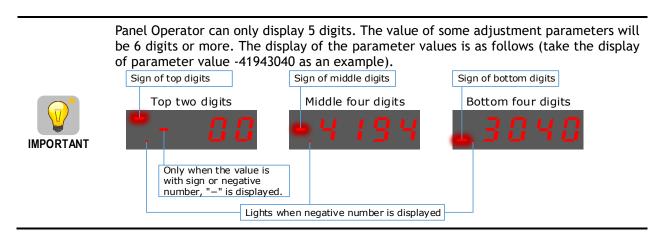
Adjustment Parameters Setting

The example below shows how to change parameter Pn102 (Speed Loop Gain) from 100 to 85.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn102.

Step 3 Press [\blacktriangleleft] key to display the current value of Pn102.



Step 4 Press [▲] key or [▼] key to change the value to 00085. Press and hold [▲] key or [▼] key to jump the setting value quickly.

Step 5 Press [◄] key or [M] key to return to the display of Pn102.

----End

The example below shows how to change parameter Pn504 (Deviation Counter Overflow Alarm) from **41943040** to **42943240**.

Step 6 Press [M] key several times to select the Parameter Setting Mode.

Step 7 Press [\blacktriangle] key or [\triangledown] key to select the parameter Pn504.

Step 8 Press [◀] key to display bottom four digits of the current value of Pn504.

Step 9 Press and hold [] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 10 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 3rd digit.

Step 11 Press $[\blacktriangle]$ key twice, changing the value of the 3rd digit from 0 to 2.

Step 12 Press [◀] key four times, moving the flashing decimal point to the 3rd of middle four digits.

Step 13 Press [\blacktriangle] key once, changing the value of the 3rd digit from 1 to 2.

Step 14 Press and hold [] key for 1 second or more to return to the display of the Pn504 parameter value or 8press the [M] key to return to the display of the Pn504.

----End

4.1.5 Monitor Mode

The Monitor Mode can be used for monitoring the reference values, I/O signal status, and Drive internal status.

The Monitor Mode can be selected during Motor operation.

Select Monitor Mode

The example below shows how to display, the contents of monitor number Un003 (when the Motor rotates at 100).

Step 1 Press [M] key several times to select the Monitor Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the monitor number Un003.

Step 3 Press [\blacktriangleleft] key to display the data of Un003.

Step 4 Press $[\blacktriangleleft]$ key to return to the display of Un003.

---- End

Contents of Monitor Mode Display

Monitor Number	Content of Display	Unit
Un000	Motor speed	rpm
Un001	Input value of speed reference	rpm
Un002	Input percentage of torque reference (relative to rated torque)	%
Un003	Internal torque reference (in percentage to the rated torque)	%
Un004	Encoder Rotation angle pulse number	-
Un005	Input signal monitor	-
Un006	Touch Probe signal monitoring	_
Un007	Output signal monitor	-
Un008	Number of input pulses within 1ms	1 pulse
Un009	Input reference pulse counter	-
Un011	Pulse deviation counter	-
Un013	Reference pulse	1 pulse
Un015	Percentage of load inertia	_
Un016	Motor Overload Ratio	%
Un019	Busbar Voltage	V
Un021	Encoder temperature	°C
Un022	Main board temperature	°C
Un024	PCP target position	-

The status (low level or high level) of input signal allocated to each input terminal is displayed.

Monitor Number	Monitoring data	Description
Un005	 When it indicates digital IO: Indication for CN1- 14, -15, -16, -17 Indication for CN1- 39, -40, -41, -42 When it indicates virtual IO: Indication for bit12, bit13, bit14, bit15 Indication for bit8, bit9, bit10, bit11 Indication for bit4, bit5, bit6, bit7 	The value of Hexadecimal, and each bit indicates the signal status of 4 channels. Range: 0000 (0) to1111 (F) 0=Low level; 1=High level The status corresponds to the corresponding pin <u>from right to</u> <u>left</u> .
Un006	Indication for TP1	The value of Binary, and each column indicates the signal state of 1 channel. 0=Low level; 1=High level
Un007	Indication for CN1-11, -12 Indication for CN1-5, -6 Indication for CN1-9, -10 Indication for CN1-7, -8	The value of Binary, and each column indicates the signal state of 1 channel. 0=Low level; 1=High level

Un007 represents the state of the output signal. The optocoupler ON and OFF of each output signal depends on whether the output signal is inverted:

If the signal is not inverted, lit for turning the optocoupler ON, and not lit for turning the optocoupler OFF.

If the signal is inverted, lit for turning the optocoupler OFF, and not lit for turning the optocoupler ON.

4.1.6 Utility Function Mode

This section describes how to apply the basic operations using the Panel Operator to run and adjust the Motor.

The following table shows the parameters in the Utility Function Mode.

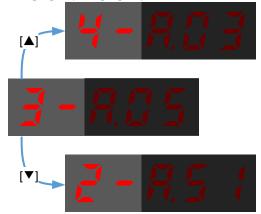
Function Number	Name
Fn000	Alarm trace data display
Fn001	Initialize parameter settings
Fn002	JOG operation

Function Number	Name
Fn003	Auto adjustment of speed reference offset
Fn004	Manual adjustment of speed reference offset
Fn005	Automatic offset-adjustment of Motor current detection signal
Fn006	Manual offset-adjustment of Motor current detection signal
Fn007	Software version display
Fn009	Load inertia identification
Fn010	Absolute encoder multi-turn reset
Fn011	Absolute encoder alarm reset
Fn017	Auto-tuning tool
Fn018	PJOG operation

Fn000 (Alarm trace data display)

The alarm trace data display can display up to ten previously occurred alarms. The following are the steps to display the alarm trace data.


Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [\blacktriangle] key or [\blacktriangledown] key to select the function number Fn000.

Step 3 Press [\blacktriangleleft] key to display latest alarm number.

Step 4 Press $[\blacktriangle]$ key or $[\triangledown]$ key to view the other alarm data.

Step 5 Press the [◀] key to return to the display of the Fn000. Press and hold [◀] key for 1 second or more to clear all the alarm trace data.

----End

Fn001 (Initialize parameter settings)

The following are the steps to initialize parameter settings.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press $[\blacktriangle]$ key or $[\lor]$ key to select the function number Fn001.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press and hold [◀] key for 1 second to initialize the parameter settings, until Panel Operator displays and blinks **done**, which indicates the initialization of parameter setting has been completed.

Step 5 Release [\blacktriangleleft] key to return to the display of the Fn001.

----End

Fn002 (JOG operation)

This utility function often used for trial operation, refers to the section 7.3.3 JOG Operation.

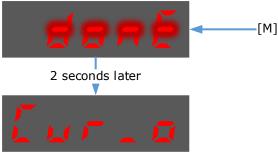
Fn005 (Automatic offset-adjustment of Motor current detection signal)

Motor current detection offset adjustment has been performed before shipping. Basically, the user need not perform this adjustment.

Execute the automatic offset adjustment if the torque ripple is too big when compared with that of other Drives.
Execute the automatic offset adjustment in the servo OFF state.

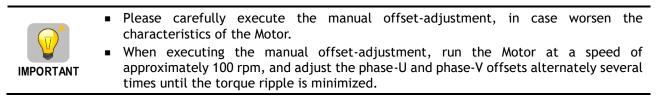
The following are the steps to execute the automatic offset adjustment.

Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [\blacktriangle] key or [\blacktriangledown] key to select the function number Fn005.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute the automatic offset adjustment. Panel Operator displays and blinks done, and 2 seconds later, it will return to previous display.



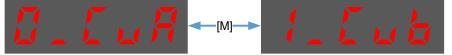
Step 5 Press the [\blacktriangleleft] key to return to the display of the Fn005.

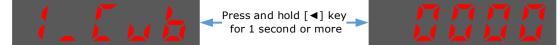
----End

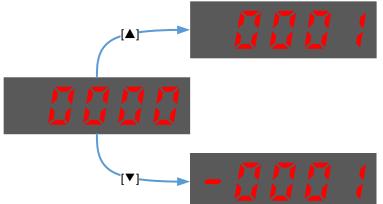
Fn006 (Manual offset-adjustment of Motor current detection signal)

To adjust the offset, perform the automatic adjustment (Fn005) first. And if the torque ripple is still big after the automatic adjustment, perform the manual offset-adjustment as follow.

Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press $[\blacktriangle]$ key or $[\lor]$ key to select the function number Fn006.


Step 3 Press [◀] key, and Panel Operator displays as below.


Step 4 Press [M] key for switching the display between 0_CuA (phase-U) and 1_Cub (phase-V).

Step 5 Select one phase display (e.g., 1_Cub, phase-V), and press and hold [4] key for 1 second or more, Panel Operator will display the current offset value.

Step 6 Press [A] key or [V] key to change the offset value.

NOTE: the offset can be adjusted from -1024 to 1024.

Step 7 Press and hold [\blacktriangleleft] key for 1 second or more to return to the phase display.

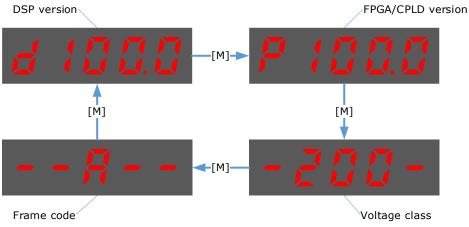
Step 8 Press $[\blacktriangleleft]$ key to return to the display of the Fn006.

----End

Fn007 (Software version display)

The following are the steps to display the software versions.

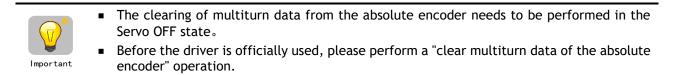
Step 1 Press [M] key several times to select the Utility Function Mode.



Step 2 Press [\blacktriangle] key or [\triangledown] key to select the function number Fn007.

Step 3 Press $[\blacktriangleleft]$ key to display the software versions.

Step 4 Press [M] key serval time to display between DSP version, FPGA/CPLD version, Voltage class and Structure code.


Step 5 Press [\blacktriangleleft] key to return to the display of the Fn007.

----End

Fn009 (Load inertia identification)

This utility function often used for tuning, refers to the section 1.

Fn010 (Absolute encoder multi-turn reset)

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [\blacktriangle] key or [\triangledown] key to select the function number Fn010.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [\blacktriangleleft] key to return to the display of the Fn010.

----End

Fn011 (Absolute encoder alarm reset)

 The clearing of multiturn data from the absolute encoder needs to be performed in the Servo OFF state.

Important

- After the A.47 and A.48 alarms occur in the drive, the user needs to replace the encoder battery, see "3.5.3 Installing or Replacing the Battery". After the replacement is complete, the alarm can be cleared by Fn011.
- Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the function number Fn011.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [◀] key to return to the display of the Fn011.

----End

Fn017 (Auto-tuning tool)

This utility function often use used for tuning, refers to the section 8.9.2 Auto-Tuning Tool.

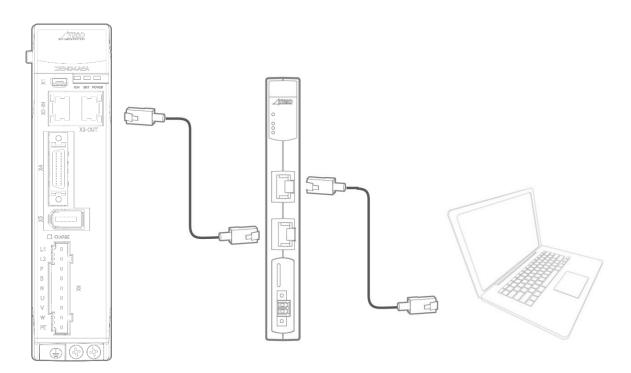
Fn018 (PJOG operation)

This utility function often used for trial operation, refers to the section 7.5 Program Jogging.

4.2 Motion Perfect

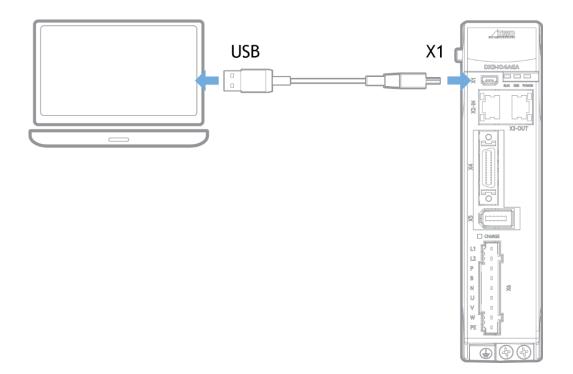
Motion Perfect is a Microsoft Windows[™] based application for the PC, designed to be used in conjunction with Trio Motion Technology's range of multi-tasking motion controllers, servo drives, HMI and IO expansion products.

	Minimum	Recommended
Operating System	Windows 10 or Windows 11	
.NET Library	4.8	
Processor	Dual core	2 or more cores
RAM	2GBytes	4GBytes+
Hard Disk Space	1Gb + space for projects	2Gb
3D Graphics	DirectX 9	DirectX 11
Communications	Ethernet	Ethernet


A PC with the following specifications is required to run Motion Perfect:

As of 14th January 2020 Microsoft has dropped support for Windows 7. The main consequence of this is that PCs running Windows 7 or older will be more open to malware infection as security related patches will no longer be available. There is no guarantee that all Motion Perfect functionality will work with older operating systems.

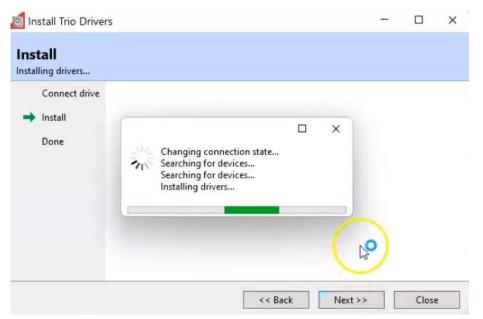
Motion Perfect is a free download and is available to from the Trio web site (www.triomotion.com).


4.3 Connection Setup

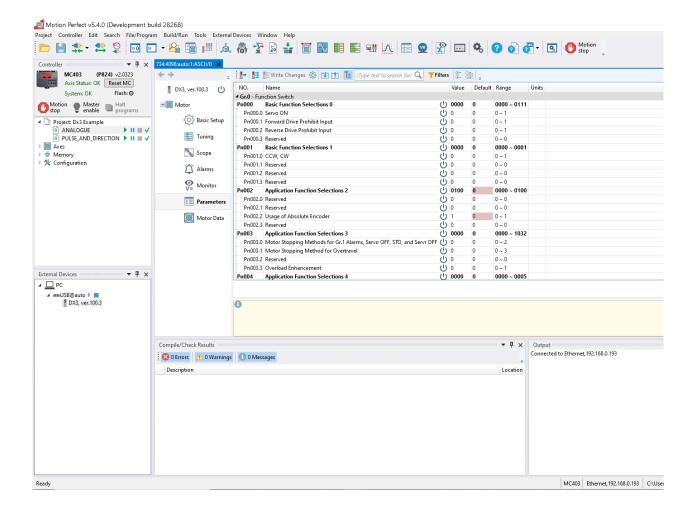
To communicate with DX3 the drive must be connected to a Trio controller via EtherCAT or and the Trio controller needs to be connected to a PC via Ethernet and the PC needs to be running Motion Perfect. The DX3 can also be connected directly to the PC via USB in Motion Perfect to access the drive commissioning screens.

4.3.1 USB Connection

You can connect directly from the DX3 to your PC by using a USB connection cable to access the commissioning screens.

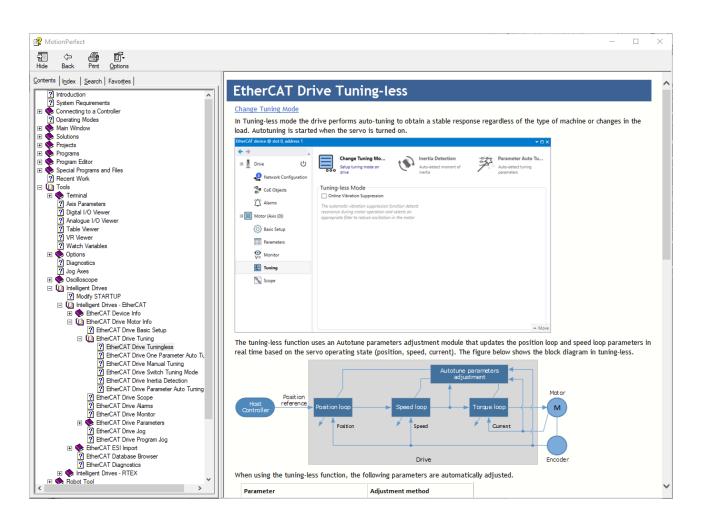

To set up the USB connection, select the external device or network option on the Motion Perfect connection screen. Then select the USB in the connection parameters dropdown menu.

Vhat's New 🔒 🗙		▲ 春 空 B 盐 🗑 配 II - □ ×	
Whats's New Image library	Connection Interface Controller:	Connection parameters	build
Symbol pick Seria		Device: Trio DX3 Device Path: auto Unit: 1 Communication mode:	nore. ▼₽×
	External: External Device or Network		
	Apply App	ly & Conned	


The first time you connect through USB on a computer, Motion Perfect will need to install the necessary drivers through a pop up if it detects they aren't yet installed.

Answer 'Yes' to the USB driver installation, then Motion Perfect will install the USB drivers for the device.

Once the drive is connected the display will appear and the commissioning screen can be used.



4.4 Drive Commissioning Screens

In either case, double clicking on the drive or motor in either the Controller Tree or the Intelligent Drives tool will open the device configuration screen. This is where all drive configuration and commissioning tools can be found.

erCAT device @ slot 0, address 1	Device Info		Status Flags		•
Drive 🔱	Motor Model EM3A-04ALA211 Profile Info Profile No 0 Ctrl Mode Auto RxPDO CW,TP TxPDO SW,AP		Mask: \$4650 Ready To Switch On	⊖ Man	ufacturer
Network Configuration			Switched On Operation Enabled Fault Voltage Enabled Quick Stop	 Rem Moc Inter Moc 	Remote Remote Mode Specific Internal Limit Active Mode Specific Mode Specific Mode Specific
🔟 Motor (Axis (0))	Control Flags			-	Aanufacturer Aanufacturer
Basic Setup	Mask: \$0000	◯ Halt		Fault Reset	
Tuning	 Enable Voltage Quick Stop 	O Mode Specific	Controller -21433890 Dem		
N Scope	 Enable Operation Mode Specific 	 Manufacturer Manufacturer 		-21433890	Demand Position (DPOS)
Alarms	Mode Specific Manufacturer Mode Specific Manufacturer Fault Reset Manufacturer	Mode Specific Manufacturer -214	-21433890	Measured Position (MPOS	
Se Monitor			-21433890	Target	
Parameters				-21433890 0	Actual Position Actual Velocity
			0	Actual Torque	
			Encoder Type: Absolu	uto on codor	
			Single-Turn Resolution: 23bit	lie encoder	Clear All Errors
			Multi-Turn Resolution: 16bit	Ī	Clear Multi-Turns Errors

From any of the device configuration screens, for help or more information, pressing F1 will launch the Motion Perfect help based on the screen in view.

The commissioning screens for the Drive are listed below. The menu is split into 2 groups, Drive and Motor. The Drive screens are for status and operations that are not necessarily axis specific. The Motor screens show detail that is axis specific.

Drive

- EtherCAT information.
- Device information.
- Update firmware (DSP and FPGA).
- Drive status.

Network Configuration.

• Flexible process data mapping.

CoE Objects

- Read / Write access to all objects.
- Create custom object lists.
- Display values in decimal or hexadecimal.

Motor

- Motor model detected.
- Live monitor of key parameters used by controller.
 - Control word, Status word.
 - DPOS, MPOS.
 - Target.

- Actual Position, Actual Velocity, Actual Torque.
- Status of motor feedback device.

Basic Setup

- Allows easy access to basic drive configuration.
- Parameters that define the physical operation of the drive.
 - Power supply type.
 - Motor Direction and Abs. Encoder Usage.
 - Behavior in case of alarm.
 - Internal torque limit.
 - Brake control.

Tuning

- Selection of tuning mode.
- Access to tuning tools.
- Access to control law parameters though graphical interface.
- Generate test move without using the command line.

Scope

- Select up to 8 drive parameters to capture.
- Data capture performed on the drive.
- Zoom / Cursors on graph.
- Save and Load graph data.
- Generate test moves without using the command line.

Alarms

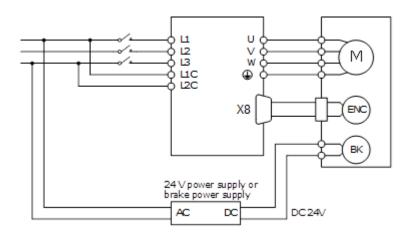
- View active alarm and historical alarm log.
- Trouble shooting tips for all alarm codes.

Monitor

- Read only access to drive status.
- Items in logical groups for viewability.
- Show / Hide option to customize view.
- Import / Export monitor item set.

Parameters

- Read / Write access to all drive parameters.
- Folding tree structure for easy navigation.
- Text search for easy location based on name.
- Filters to identify changes.
- Import and export of full or partial parameter set.
- Create STARTUP program based on full or partial parameter set.


Motor

• View motor details.

4.5 Basic Operation

To ensure safe and correct operation, check the following items before you start.

- Make sure that the Drive and Motor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the Drive.
- Make sure that there are no loose parts in the Motor mounting.
- If you are using a Motor with an Oil Seal, make sure that the oil seal is not damaged. Also make sure that oil has been applied.
- If you are performing trial operation on a Motor that has been stored for a long period of time, make sure that all Motor inspection and maintenance procedures have been completed.
- If you are using a Motor with a Holding Brake, make sure that the brake is released in advance. To release the brake, you must apply the specified voltage of 24 VDC to the brake.

Once connected to a motor, when the Drive is powered up it will auto detect the motor and perform an auto setup which will allow operation of the motor.

The default power supply selection for the main circuit is Three Phase, 200 VAC, 50Hz. If the supply in use is different to this the drive will generate an alarm. The correct supply type can be selected from the Basic Setup page in the drive commissioning screens or by directly writing to parameter Pn007.1 and Pn007.3

Parameter	Setting	Meaning
Pn007.1	0	Single-phase AC for 1.5kW drive will apply an 80% de-rate for 2.0kW and 3.0kW single-phase is not supported
	1 [Default]	Three-phase AC
	2	DC
Pn007.3 0 [Default] 1		50 Hz
		60 Hz

Once the supply type has been changed the drive will require a re-start for the new selection to apply.

If using an absolute encoder, the drive will generate an alarm if it detects a low battery voltage at the encoder. If a battery is fitted and the voltage is correct, this alarm can be cleared from the Motor page in the drive commissioning screens. If there is no battery fitted, then the usage of the encoder will need to be changed to incremental. Changing the encoder usage from absolute to incremental will not change the encoder resolution but will ignore multi-turn information from the encoder and inhibit the low battery voltage alarm. The correct encoder usage can be selected from the Basic Setup page in the drive commissioning screen or by writing directly to parameter Pn002.2.

Parameter	Setting	Meaning
Pn002.2	0 [Default]	Use the encoder as an absolute encoder (requires encoder battery)

Parameter	Setting	Meaning
	1	Use the encoder as an incremental encoder

Once the encoder usage has been changed the drive will require a re-start for the new selection to apply.

To perform simple motion the Move panel in the Scope page (or Tuning page) in the drive commissioning screens can be used. This offers either Jog or Program Jog motion.

4.5.1 Drive Firmware

The version of firmware installed on the DX3 drive may not always be the current recommended type.

The current version can be checked by going online to the drive via Motion Perfect and looking at the Drive section of the DX3's properties. An example of this is shown below. To initiate the update of firmware to the drive select the **Load Firmware** button and follow the on-screen instructions when prompted.

EtherCAT device @ slot 0, address 1 🗙			
← → □ I Drive U ← I Drive U	EtherCAT Info Position 1 Alias 0 Address 1 State Operational		
Proceeding CoE Objects	Device Info		
🗏 🔟 Motor (Axis (0))	Vendor ID \$000002DE Vendor Trio Motion Technology		
🐼 Basic Setup	Product code \$00001000 Model TRIO DX4		
E Tuning	Revision \$00000001		
N Scope	Firmware Version 101.2 FPGA Version 100.0	Load Firmware Reprogram FPGA	
Alarms	Servo Model DX4-108AJA		
Se Monitor	State Status RDY		
Parameters	Main Power ON		
Motor Data	Over-travel - Advanced mode OFF 🛛 🖀 Enable		
	FoE		
	Download File		
	Upload File		

Firmware versions are always available for download from the Trio website on the DX3 Product page - Software section.

The correct firmware to download is based on the frame size of the DX3. Using the information below is also an easy-to-use indication on the file name type to use.

Part Number	Frame Size
DX3-1A5A	А
DX3-101A	А
DX3-102A	А
DX3-104A	А
DX3-108A	В
DX3-110A	В
DX3-115A	С
DX3-120A	С
DX3-110D	D
DX3-115D	D
DX3-120D	E
DX3-130D	E
DX3-150D	F
DX3-175D	F

The firmware files have the .bin file extension.

Examples:

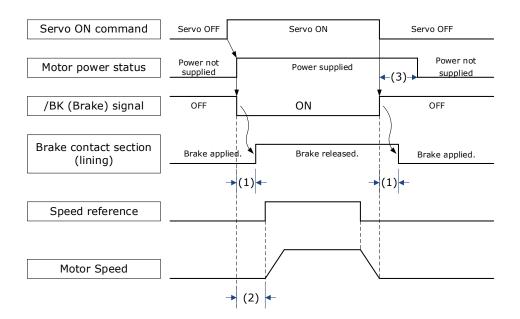
DX3_DSP_APP_A_M_ <mark>A</mark> 000_V101B4.bin	A frame size firmware version
DX3_DSP_APP_A_M_ <mark>B</mark> 000_V101B4.bin	B frame size firmware version
DX3_DSP_APP_A_M_ <mark>C</mark> 000_V101B4.bin	C frame size firmware version

4.5.2 Holding Brake

A holding brake is used to hold the position of the moving part of the machine when the drive is turned off, so that the moving part does not move due to gravity or an external force.

Wiring details for the holding brake can be found in 3.6.4 Holding Brake Wiring.

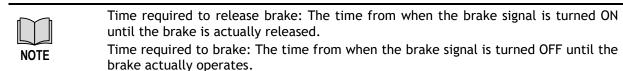
If the motor has a holding brake a digital output on the drive can be assigned for brake control. Any of the digital outputs on the drive can be configured as the brake control output.


The assignment is made by selecting from the Basic Setup page in the drive commissioning screens or by writing directly to parameter Pn511.

Parameter	Setting	+ Pin	- Pin	Meaning			
Pn511.0	4	X7-6	X7-7	The /BK signal is output from X7-6 and X7-7.			
Pn511.1	4	X7-8	X7-9	The /BK signal is output from X7-8 and X7-9.			
Pn511.2	4	X7-10	X7-11	The /BK signal is output from X7-10 and X7-11.			

Selecting a digital output in the Basic Setup screen will enable the brake control timing parameters.

Brake Operating Sequence


The time required to release the brake and the time required to brake should be considered to determine the brake operation timing, as described below.

(1): The brake delay times for motors with Holding Brakes.

(2): Before you output a reference from the host controller to the drive, wait for at least 50 ms plus the time required to release the brake after you send the S-ON command.

(3): Use Pn506 (Brake Engage Delay Time), Pn507 (Brake Engage Speed Threshold), and Pn508 (Brake Engage Timeout) to set the timing of brake operation.

Brake Control when Motor is Stationary

Disabled -> Enabled.

The brake disengage delay time controls the sequence and delay of brake signal when the drive changes from disabled to enabled when the motor is stationary.

Parameter	Name	Range	Unit	Default
Pn505	Brake Disengage Delay Time	-2000 to 2000	ms	0

If Pn505 is a positive value, when the Servo ON command is received, the brake signal will change first, and then power will be supplied to the motor after the delay time.

Drive enabled		
Holding Brake		Brake Disengage Delay Time (Pn505) 750 ms
Motor power		

If Pn505 is a negative value, when the Servo ON command is received, the power will be supplied to the motor immediately, then the brake signal will change after the delay time.

Drive enabled		
Holding Brake		Brake Disengage Delay Time (Pn505) -750 ms
Motor power		

Enabled -> Disabled.

The brake engage delay time controls the delay between the brake signal and motor power when the drive changes from enabled to disabled when the motor is stationary.

Parameter	Name	Range	Unit	Default
Pn506	Brake Engage Delay Time	0 to 500	10ms	0

When the motor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force.

This slight motion can be eliminated by setting the Brake Engage Delay Time (Pn506) so that power supply to the motor is stopped after the brake is applied.

Drive enabled	
Holding Brake	Brake Engage Delay Time (Pn506)
Motor power	

Power supply to the Motor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

Brake Control when Motor is In Motion

If an alarm occurs or the Servo OFF command is received while the motor is operating, the motor will start stopping and the brake signal will be turned OFF. You can adjust the timing of brake signal output by setting the Brake Engage Timeout (Pn508).

Parameter	Name	Range	Unit	Default
Pn507	Brake Enable Speed Threshold	10 to 100	1rpm	100
Pn508	Brake Enable Waiting Time	10 to 100	10ms	50

Drive enabled	
Motor Speed	Brake Engage Speed Threshold (Pn507)
Holding Brake	· ·
Drive enabled	Brake Engage Timeout (Pn508)
Holding Brake	50 x10ms

The brake signal changes when either of the following conditions is satisfied:

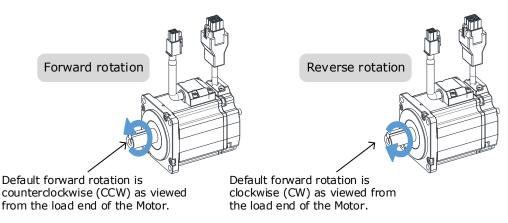
- When the motor speed falls below the level set in Pn507 after the power to the motor is turned OFF.
- When the time set in Pn508 is exceeded after the power to the motor is turned OFF.

4.5.3 Jog Motion

The 'jog' motion is a velocity profiled move. It has no end point so will generate continuous motion in a specific direction. The velocity profile is defined by acceleration, speed and deceleration value and will generate a trapezoidal velocity profile. Motion is commanded when the mouse button is clicked and halted when the button is released.

The Jog control is shown below:

Move						무 🔻
Jog Program Jog						
Name	Value	Default	Range	Units		
Jogging Speed	500	500	0 ~ 6000	rpm	Jog	-
Acceleration Time	0	0	0 ~ 10000	ms	enable	
Deceleration Time	0	0	0 ~ 10000	ms		
						More info


The motion profile is controlled three parameters:

- Jogging Speed: the maximum speed the jog profile will demand in revs per minute (RPM)
- Acceleration Time: the time to accelerate from rest to 1000 RPM in milliseconds (ms)
- Deceleration Time: the time to decelerate from 1000 RPM to rest in milliseconds (ms)

To initiate motion, first the drive must be enabled by clicking the 'Motor enable' button. This will enable the motion arrows.

Click and hold the arrow buttons to run the motor. The jog motion is continuous; while the button is pressed the motor will run in the direction of the arrow. The motor will stop when the button is released.

The '+' arrow will cause forward rotation, the '-' arrow will cause reserve rotation.

The rotation direction of the Motor can be changed by setting the Motor Direction from the Basic Setup page in the drive commissioning screens. The figure above shows the default setting.

When the drive is enabled via the 'Jog enable' button, the drive switches to a local control mode. While in this mode the position change is not sent to the controller. The controller values of MPOS and DPOS will not change during a jog. When the drive is disabled, the update of MPOS and DPOS on the controller resume.

4.5.4 **Program Jog Motion**

The 'program jog' motion is a sequence of two profiled moves of a specific distance with a programmable dwell time between moves. Each move has an independent move distance, acceleration, deceleration and speed. Both are profiled using a trapezoidal velocity profile. Once started, the motion will repeat until stopped by the user.

The Program Jog control is shown below:

Move											ተ
Jog Program Jog											
irst Move						Second Move					
Name	Value	Default	Range	Units	1	Name	Value	Default	Range	Units	Dia 2
Move Distance for first move	5	5	-50 ~ 50	rev		Move Distance for second move	-5	-5	-50 ~ 50	rev	PJog enable
Max Speed for first move	1000	1000	100 ~ 3000	rpm		Max Speed for second move	1000	1000	100 ~ 3000	rpm	
Accel/Decel Time for first move	500	500	50 ~ 2000	ms		Accel/Decel Time for second move	500	500	50 ~ 2000	ms	Run
Dwell Time for first move	1000	1000	100 ~ 10000	ms		Dwell Time for second move	1000	1000	100 ~ 10000	ms	
											More info

The parameters controlling the program jog are:

- Move Distance: the distance to move, this is a signed value where a positive value represents forward motion and a negative value represents reverse motion. The distance is specified in revolutions (revs)
- Max Speed: the maximum speed of the profiled velocity in revs per minuite (RPM)
- Accel/Decel Time: the time to accelerate from rest to Max Speed in milliseconds (ms). The deceleration value is the same as acceleration.
- Dwell Time: the delay time before starting the next move in milliseconds (ms)

To initiate motion, first the drive must be enabled by clicking the 'PJog enable' button. This will enable the 'Run' button.

Clicking the 'Run' button will start the motion.

The sequence will run repeatedly until stopped by either clicking the 'Run' button or the 'Jog enable' - during motion clicking either will disable the axis.

When the drive is enabled via the 'PJog enable' button, the drive switches to a local control mode. While in this mode the position change is not sent to the controller. The controller values of MPOS and DPOS will not change during a jog. When the drive is disabled, the update of MPOS and DPOS will resume.

Chapter 5 Applications Functions

5.1 Power Supply

The main circuit and control circuit of the Drive can be operated with AC power input. When AC power input is selected, single- phase or three phase power input can be used. You shall to set the parameter Pn007.1 and Pn007.3 (use AC power input) according to the applicable power supply.

Parameter	Setting	Meaning	When Enabled	
	0	Use a single-phase AC power supply.		
Pn007.1	1 [Default] Use a three-phase AC power supply. NOTE: This setting is invalid for the Drive power from 50W to 400W.		After restart	
Pn007.3	0	AC power supply frequency is 50Hz.		
F11007.3	1	AC power supply frequency is 60Hz.		

An alarm A.24 (Main Circuit Power Supply Wiring Error) may occur if the setting of Pn007.1 does not match the actual power supply.

 When using AC power supply and DC power supply to connect to the driver, please make a terminal connection.

Ac power supply should be connected to the L1/L2/L3 terminals and L1C/L2C terminals of the driver.

- DC power supply should be connected to the B1/decile terminal and one terminal and L1C/L2C terminal of the driver.
- Before using the DC power input, please be sure to set Pn007.1=2 before entering the main loop to avoid burning the internal components of the driver.
 - When the DC power supply is input, set the fuse on the power supply wiring.
 - No regeneration is performed when using the DC power input, so please perform regenerative energy treatment on the power supply side.

5.2 Motor Rotation Direction

You can reverse the direction of Motor rotation by changing the setting of Pn001.0.

The default setting for Forward Rotation is counter-clockwise (CCW) as viewed from the Drive end.

Parameter	Setting	Reference	Diagram
Pn001.0	0: CCW	Forward Reference	CCW Torque reference Encoder pulse division output PAO PBO Phase B advanced
		Reverse Reference	CW Torque reference CW Torque reference Rotation Speed Encoder pulse division output PAO Phase A advanced PBO Phase A

Parameter	Setting	Reference	Diagram
1: CW	4. 614	Forward Reference	CW Torque reference Encoder pulse division output PAO PBO Phase B advanced
	1. UV	Reverse Reference	CCW + Torque reference Encoder pulse division output PAO TOTAL PAO PBO CCW + PAO Rotation speed

5.3 Overtravel Limit

5.3.1 Function Description

Overtravel is a safety function of the Drive that forces the Motor to stop in response to a signal input from a limit switch that is activated when a moving part of the machine exceeds the safe range of movement.

The overtravel signals include the P-OT (Forward Drive Prohibit) and the N-OT (Reverse Drive Prohibit) signals.

You use the P-OT and N-OT signals to stop the machine by installing limit switches at the positions where you want to stop the machine that is operated by the Motor.

An example of wiring for the P-OT signal and the N-OT signal is shown in Figure 5-1.

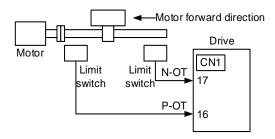


Figure 5-1 Wiring diagram for the overtravel

Using the overtravel function is not necessary for rotating applications such as rotary tables and conveyors. No wiring for overtravel input signals is required.

 To prevent accidents that may result from contact faults or disconnections, use normally closed limit switches.

Moreover, never change the default settings of the polarity of the overtravel signals (P-OT and N-OT).

• When using the Motor on a vertical axis, the workpiece may fall in the overtravel condition. To prevent this, always set the zero clamp after stopping with Pn003.1=2.

5.3.2 Connecting the Overtravel Signal

To use the overtravel function, connect the following overtravel limit switch input signal terminals.

Туре	Name	Pin	Setting	Meaning
Input	P-OT	CN1-16	ON	Forward run allowed. Normal operation status.

Туре	Name	Pin	Setting	Meaning
			OFF	Forward run prohibited. Forward overtravel.
N-OT	N OT	CN14_47	ON	Reverse run allowed. Normal operation status.
		OFF	Reverse run prohibited. Reverse overtravel.	

5.3.3 Enabling/Disabling the Overtravel Signal

Parameters can be set to disable the overtravel signal. If the parameters are set, there is no need to wire the overtravel input signal.

Parameter	Setting	Meaning	When Enabled	
D=000 1	0 [Default]	Inputs the Forward Drive Prohibited (P-OT) signal from CN1-16. [Default]		
Pn000.1	1	Disables the Forward Drive Prohibited (P-OT) signal. (Always allow forward rotation)	After	
0 [Default]		Inputs the Reverse Drive Prohibited (N-OT) signal from CN1-15. [Default]	restart	
Pn000.2	1	Disables the Reverse Drive Prohibited (N-OT) signal. (Always allow reverse rotation)		

In addition, you can disable the overtravel limit function by not setting the values 1 and 2 to parameter Pn509 (not allocate the P-OT signal and N-OT signal).

5.4 Motor Stopping Methods

Following 4 ways are available to stop the drive alarming (Gr.1 or Gr.2), OT state, and servo OFF occurs:

Stop method	Meaning	
Stopping by dynamic brake	The electric circuits are internally connected to stop the Motor quickly.	
Coasting to a stop	The Motor stops naturally due to friction during operation.	
Reverse brake	Emergency stop torque is used to decelerate the Motor to a stop.	
Do not stop	Regards Alarms as the Warnings, and the Motor will not be stopped.	

Also, you can let the Motor enter the following states after the Motor stops.

State after Stopping Meaning	
Coasting	The Drive does not control the Motor (The machine will move in response to a force from the load).
Dynamic Brake (DB) The electric circuits are internally connected to hold the Motor	
Zero clamping	A position loop is created, and the Motor remains stopped at a position reference of 0. (The current stop position is held.)
Operation	The state in which the Drive continues to control the Motor.

5.4.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF

You can select the Motor stopping methods for Gr.1 Alarms occur, in Safe state or Servo OFF by setting the parameter Pn003.0.

Parameter	Setting	Stop Method After Stopping		When Enabled
	0[Default]	Stopping by dynamic brake	Coasting	
Pn003.0	1	Stopping by dynamic brake	Dynamic Brake	After restart
	2	Coasting to a stop	Coasting	

5.4.2 Motor Stop Methods for Overtravel

You can select the Motor stopping methods for overtravel occurs by setting the parameter Pn003.1.

Parameter	Setting	Stop Method After Stopping V		When Enabled	
	0 [Default]	Stopping by dynamic brake Coasting			
Pn003.1	1	Inertial running stops	Coasting	After restart	
	2	Reverse brake	Zero clamping	AILEI TESLATI	
	3	Reverse brake	Coasting		

5.4.3 Motor Stop Methods for Gr.2 Alarms

You can select the Motor stopping methods for Gr.2 Alarms occur by setting the parameter Pn004.0.

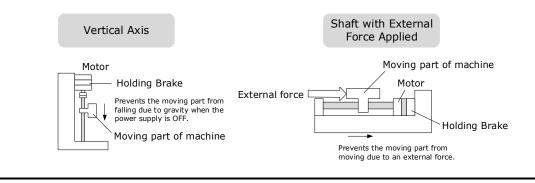
Parameter	Setting	Ston Method LAtter Stonning L		When Enabled
	0 [Default]	Stop by dynamic brake	Coasting	
	1	Stop by dynamic brake	Dynamic Brake	
Pn004.0	2	Coast to a stop	Coast	After
P11004.0	3	Reverse brake	Dynamic Brake	restart
	4	Reverse brake	Coast	
	5	Do not stop, regard as a warning	Operation	

5.4.4 Reverse Brake Torque Limit Setting

If Pn004.0 is set to 3 or 4, the Motor will be decelerated to a stop using the torque set in Pn405 as the maximum torque.

Parameter	Name	Range	Unit	Default	When Enabled
Pn405	Reverse Brake Torque Limit	0 to 350	1%	300	Immediately

	• This settin	g is a percentage of the rated torque.
NOTE NOTE	Motor at th	t setting is 300%. This setting is large enough to allow you to operate the ne maximum torque. However, the maximum stop torque that you can actually maximum torque of the Motor.

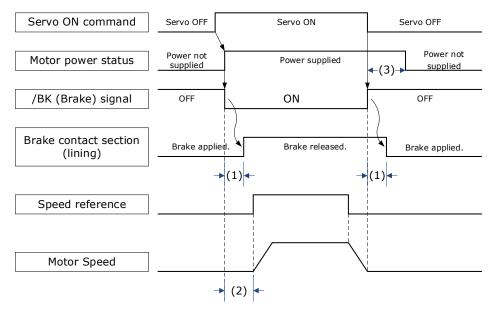

5.5 Holding Brake

5.5.1 Function Description

A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that the moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine.

The holding brake is used in the following cases.



The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.

5.5.2 Brake Operating Sequence

You must consider the time required to release the brake and the time required to brake to determine the brake operation timing, as described below.

(1): The brake delay times for Motors with Holding Brakes.

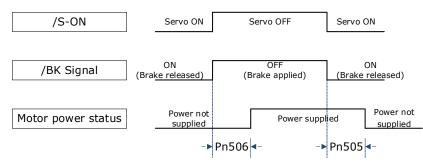
(2): Before you output a reference from the host controller to the Drive, wait for at least 50 ms plus the time required to release the brake after you send the S-ON command.

(3): Use Pn506 (Servo OFF Waiting Time), Pn507 (Brake Enable Speed Threshold), and Pn508 (Brake Enable Waiting Time) to set the timing of when the brake will operate and when the servo will be turned OFF.

- Time Required to Release Brake: The time from when the /BK (Brake) signal is turned ON until the brake is actually released.
- Time Required to Brake: The time from when the /BK (Brake) signal is turned OFF until the brake actually operates.

5.5.3 BK (Brake) Signal

NOTE


The /BK signal is turned OFF (to operate the brake) when the Servo is turned OFF or when an alarm is detected. You can adjust the timing of brake operation (i.e., the timing of turning OFF the /BK signal) with the Servo OFF Waiting time (Pn506).

Туре	Signal	Pin	Signal Status	Meaning
Output		Allocated by DaE11	ON	Releases the brake.
	/BK	Allocated by Pn511	OFF	Activates the brake.

Parameter	Setting	+ Pin	- Pin	Meaning
Pn511.0	4	CN1-11	CN1-12	The /BK signal is output from output terminal CN1-11 and CN1-12.
Pn511.1	4	CN1-5	CN1-6	The /BK signal is output from output terminal CN1-5 and CN1-6.
Pn511.2	4	CN1-9	CN1-10	The /BK signal is output from output terminal CN1-9 and CN1-10.

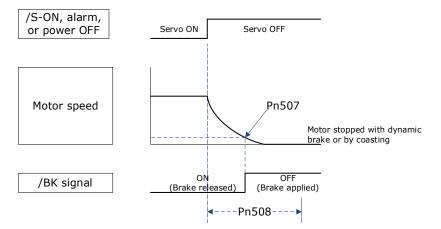
5.5.4 Output Timing of /BK Signal when Motor is Stopped

When the Motor is stopped, the /BK signal turns OFF as soon as the S-OFF (Servo OFF) command is received. Use the servo OFF delay time (Pn506) to change the timing to turn OFF power supply to the Motor after the S-OFF command is input.

Parameter	Name	Range	Unit	Default	When Enabled
Pn505	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediately
Pn506	Servo OFF Waiting Time	0 to 500	10ms	0	Immediately

NOTE	•	Set Pn505 as a positive value, when S-ON command is received, the /BK signal will be output first, and then power supplied to the Motor after waiting for this setting.
	•	Set Pn505 as a negative value, when S-ON command is received, power supplied to the Motor immediately, and then output the /BK signal after waiting for this setting.

When the Motor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force.


You can eliminate this slight motion by setting the servo OFF delay time (Pn506) so that power supply to the Motor is stopped after the brake is applied.

Power supply to the Motor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

5.5.5 Output Timing of / BK Signal when Motor is operating

If an alarm occurs or S-OFF command is received while the Motor is operating, the Motor will start stopping and the /BK signal will be turned OFF. You can adjust the timing of /BK signal output by setting the Brake Enable Waiting Time (Pn508).

The /BK signal goes to H level (brake ON) when either of the following conditions is satisfied:

- When the Motor speed falls below the level set in Pn507 after the power to the Motor is turned OFF.
- When the time set in Pn508 is exceeded after the power to the Motor is turned OFF.

Parameter	Name	Range	Unit	Default	When Enabled
Pn507	Brake Enable Speed Threshold	10 to 100	1rpm	100	Immediately
Pn508	Brake Enable Waiting Time	10 to 100	10ms	50	Immediately

5.6 Encoder Settings

5.6.1 Absolute Encoder Selection

Absolute encoders are fitted on motors with an encoder type of L, e.g. MXL-02ALA211. These encoders require a battery supply to retain the absolute encoder data when the Drive power is removed.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

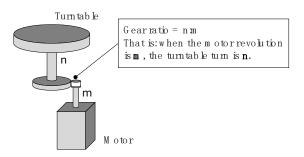
There are two types of encoders for Motors. The usage of the encoder is specified in Pn002.2.

Parameter	Setting	Meaning	When Enabled
Pn002.2	0 [Default]	Use the encoder as an absolute encoder.	After
	1	Use the encoder as an incremental encoder.	restart

The default setting of the Drive uses an absolute encoder. If the Motor encoder is an incremental encoder, an A47 alarm or an A48 alarm will occur when the Drive is first powered up.

In this case, set Pn002.2=1 and restart the Drive.

5.6.2 Encoder Alarm Resetting

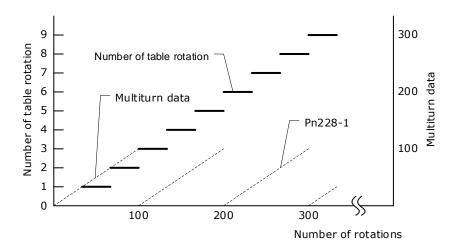

If alarm A.47 or A.48 occurs, replace the battery as soon as possible. After replacing the battery, perform the operation Absolute encoder alarm reset and Fn010 (Absolute encoder multi-turn reset.

For details about how to replace a battery and how to perform the replacement, see 3.5.4 Installing or Replacing a Battery.

5.6.3 Multiturn Limit Setting

The multiturn limit is used in position control for a turntable or other rotating body.

For example, consider a machine that moves the turntable shown in the following diagram in only one direction.



Because the turntable moves in only one direction, the upper limit to the number of revolutions that can be counted by an absolute encoder will eventually be exceeded.

The multiturn limit is used in cases like this to prevent fractions from being produced by the integral ratio of the number motor revolutions and the number of turntable revolutions.

For a machine with a gear ratio of n:m, as shown above, you can set Pn228 (OB 30A9h in EtherCAT) as m, and the value of $\underline{m - 1}$ will be the setting for the multiturn limit setting.

The relationship between the number of turntable revolutions and the number of motor revolutions is shown in the following figure.

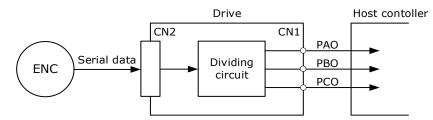
Pn228 Multiturn limit 0 to 65535 1 rev 10	10 After restart

NOTE • This parameter is enabled when you use an absolute encoder.

The data will change as shown below when this parameter is set to anything other than the default setting.

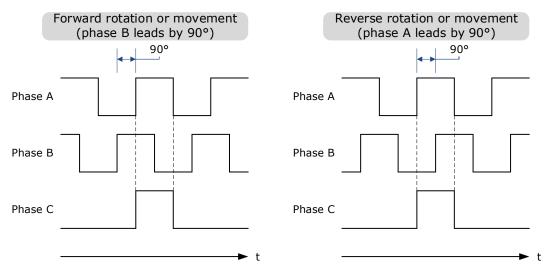
- If the motor operates in the reverse direction when the multiturn data is 0, the multiturn data will change to the value set in (Pn228-1).
- If the motor operates in the forward direction when the multiturn data is at the value set in (Pn228-1), the multiturn data will change to 0.

• The multiturn data will always be 0 in the following cases. It is not necessary to reset the absolute encoder in these cases.


- When you use a single-turn absolute encoder
- When you set Pn002.2 = 1 (Use the encoder as an incremental encoder)

5.6.4 Encoder pulse dividing output

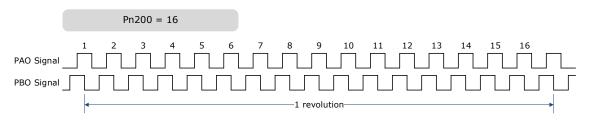
Pulse dividing signals.


Encoder pulse dividing pulse output processes the signals sent from the encoder inside the driver, and outputs such signals to the outside in the form of two-phase pulses (Phase A, and Phase B) with 90° phase differential. It can be used as position feedback in the host controller.

Signal Name	Connector Pin Number	Name	Description
PAO+	CN1-20	Encoder pulse	PG pulse dividing (Pn200): the number of
PAO-	CN1-21	dividing output Phase A	pulses when motor rotates a single revolution.
PBO+	CN1-22	Encoder pulse	The phase differential between phase A
PBO-	CN1-23	dividing output Phase B	and phase B here is electrical angle of 90 $^{\circ}$
PCO+	CN1-24	Encoder pulse	
PCO-	CN1-25	dividing output Phase C	The actual phase C output of encoder

Note: Even in the reverse mode (Pn001.0=1), the pulse dividing output phase form is the same as the standard setting (Pn001.0=0).

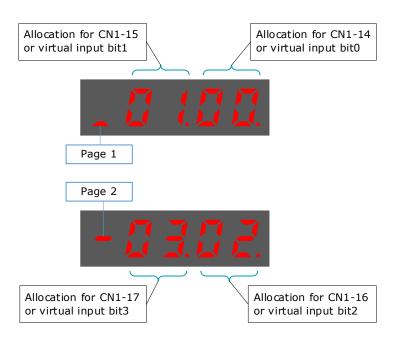
Output Phase Form


Pulse Dividing Ratio Setting

Encoder pulse dividing means that the divider converts data into the pulse density (Pn200) set by the user parameter based on the pulse data of the motor encoder, and outputs it. The setting unit is the number of pulses/revolutions.

No.	Name	Range	Unit	Default	When Enabled
Pn200	PG dividing ratio	16 to 16384	1 pulse	16384	After restart

- Set the number of pulses for PG output signals (PAO,/PAO,PBO,/PBO) externally from the servo drive through Pn200.
- Feedback pulses from the encoder per revolution are divided inside the servo drive by the number set in Pn200 before being output.
- Set the encoder pulse dividing ratio according to the system specifications of the machine or host controller.
- The setting of the encoder pulse dividing number is restricted by the encoder's resolution.


[Output Example] Pn200=16 (when 16 pulses are output per revolution), the output examples of signals of encoder pulse dividing output phase A (PAO) signal and encoder pulse dividing output phase B (PBO) are shown below.

5.7 IO Signal Allocation

Functions are allocated to the pins on the I/O signal connector (CN1) in advance. You can change the allocations and the polarity for some of the connector pins. Function allocations and polarity settings are made with parameters.

Operation panel can only display 5 digits. When distributing IO signals, it is necessary to display or set all the signals by page turning. The display instructions are detailed as follows (take Pn509 as an example).

5.7.1 Input Signal Allocations

Allocation Description

CN1 provides a total of 8 pin numbers available for allocation of input signals, corresponding to the subparameters of Pn509 and Pn510. Moreover, there're 8 virtual input bits controlled by Modbus communication, corresponding to the sub-parameters of Pn709 and Pn710.

IMPORTANT	 If you allocate two or more signals to the same input circuit, a logical OR of the inputs will be used and all the allocated signals will operate accordingly. This may result in an unexpected operation. Since the pins have priority, only the highest priority pin is in effect if a signal is repeatedly allocated to multiple pins. The priority of the pins is arranged from high to low as follows: CN1-14<cn1-15<cn1-16<cn1-17<cn1-39<cn1-40<cn1-41<cn1-42<bit8<bit9<bit10<bit11<bit12<bit13<bit14<bit15< li=""> </cn1-15<cn1-16<cn1-17<cn1-39<cn1-40<cn1-41<cn1-42<bit8<bit9<bit10<bit11<bit12<bit13<bit14<bit15<>
-----------	--

Default Input Signals

Table 5-1 lists the input signals that can be allocated and their corresponding values. Set the sub-parameters of Pn509, Pn510, Pn709 and Pn710 to use the following values, which means that they are allocated to the corresponding pins.

Signal	Name	Value
S-ON	Servo ON Input Signal	00
P-CON	Proportional Control Reference	01
P-OT	Forward Drive Prohibit Input Signal	02

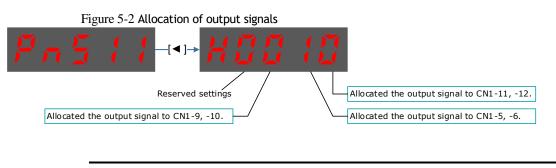

Signal	Name	Value
N-OT	Reverse Drive Prohibit Input Signal	03
ALMRST	Alarm Clear	04
CLR	Clear Position Deviation Pulse	05
P-CL	Forward External Torque Limit Input Signal	06
N-CL	Reverse External Torque Limit Input Signal	07
G-SEL	Gain Selection Input Signal	08
JDPOS-JOG+	PCP Control, PJOG positive command	09
JDPOS-JOG-	PCP Control, PJOG negative command	0A
JDPOS-HALT	PCP Control, stop command	OB
HmRef	Homing Input Signal	0C
SHOM	Homing Start Signal	0D
ORG	Reference Switch Signal	0E
ZCLAMP	Zero Clamp Signal	0F
TORQ_JD1	Internal torque contact 1	10
TORQ_JD2	Internal torque contact 2	11
TORQ_SPEED_LIMIT1	Internal torque reference limit 1	12
TORQ_SPEED_LIMIT2	Internal torque reference limit 2	13
ANLOD_REV	Analogue input command negation When the control mode is of D-parameter speed, the given speed is reversed	14
POS0	Select PCP connection point as 0	15
POS1	Select PCP connection point as 1	16
POS2	Select PCP connection point as 2	17
POS3	Select PCP connection point as 3	18
POS4	Select PCP connection point as 4	19
ANAG_SEL	Switch the speed command input gain from Pn300 to Pn302 in Analogue speed control mode. Switch the torque command input gain from Pn400 to Pn414 in Analogue torque control mode.	1A
MDP1	Reserved	1A
MD0	Reserved	1B
MD1	Reserved	1C

Table 5-1 Default Input signals

5.7.2 Output Signal Allocations

Allocation Description

The I/O signal connector (CN1) on the Drive provides three group of pins (points) for allocating the output signals, corresponding to the parameter Pn511, as is shown in Figure 5-2.

If you allocate more than one signal to the same output circuit, a logical OR of the signals will be output.

Default Output Signals

Table 5-2 lists the output signals that can be allocated and their corresponding values. Set the parameter Pn511 to use the following values, which means that they are allocated to the corresponding pins.

Signal	Name	Value
COIN/VCMP	Positioning Completion Output Signal or Speed Coincidence Detection Output Signal	0
TGON	Rotation Detection Output Signal	1
S-RDY	Servo Ready Output Signal	2
CLT	Torque Limit Detection Output Signal	3
ВК	Brake Output Signal	4
PGC	Motor C-pulse Output Signal	5
ОТ	Overtravel Output Signal	6
RD	Motor Excitation Output Signal	7
HOME	Homing Completion Output Signal	8
TCR	Torque Detection Output Signal	9
R-OUT1	Remoted IO Output Signal 0	А
R-OUT2	Remoted IO Output Signal 1	В
R-OUT3	Remoted IO Output Signal 2	С

Table 5-2 Default Output signals

5.8 Control Mode Selection

Speed control, position control and torque control are available to servo drive. Set through the control mode selection (Pn005.1).

Parameter	Set Value	Control Mode	Description
	0	Speed Control (Analogue Reference)	Controls servomotor speed using Analogue voltage speed reference.
	1	Position Control (Reference)	Controls the position of the servomotor using pulse train position reference. Controls the position with the number of input pulses and controls the speed with the input pulse frequency. Use when positioning is required.
	2	Torque Control	Controls the servomotor's output torque with Analogue voltage torque reference. Use to output the required amount of torque for operations such as pressing.
	3	Speed Control (contact reference) ↔Speed Control (zero reference)	Use 7 speed parameters (Pn316 to Pn322) and zero reference (halt) pre-set in the servo drive for speed control. When this control mode is selected, no Analogue reference is required.
	4	Speed Control (contact reference) ↔Speed Control (Analogue reference)	
Pn005.1	5	Speed Control (contact reference) ↔Position Control (pulse train reference)	
	6	Speed Control (contact reference) ↔Torque Control	These are switching modes for using the above-mentioned control methods described above in combination. Select the control
	7	Position Control (pulse train reference) ↔ Speed Control (Analogue reference)	method switching mode that best suits the application.
	8	Position Control (pulse train reference) ↔ Torque Control	
	9	Torque Control ↔ Speed Control (Analogue reference)	
	A	Speed Control (Analogue reference) ↔Zero Clamp Control	Use zero clamp function under speed control mode.
	В	Position Control (pulse train reference)↔ Position Control (pulse prohibited)	Use pulse prohibited function under position control mode.
	с	PCP Control	Pre-set the position control and PJOG operation of 32 program contacts in the servo drive. When this control mode is selected, the signal input of an external linear drive is not required.

Parameter	Set Value	Control Mode	Description
	D	Position Control (Parameter reference)	Use the speed control of a speed parameter (Pn304) pre-set in the servo drive. When this control mode is selected, no Analogue reference is required.

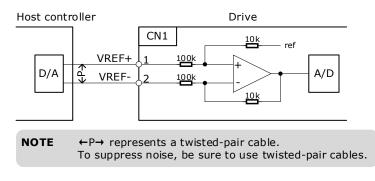
5.9 Speed Control

Speed control is selected by Pn005.1:

Parameter	Setting	Meaning	When Enabled
Pn005.1	0	Control mode selection: speed control (Analogue reference)	After restart

5.9.1 Setting speed control

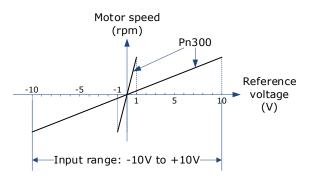
Speed reference input signal


•

To control the speed of the servo motor at a speed proportional to the input voltage, it is necessary to set the speed reference input signal.

Туре	Signal Name	Connector Pin Number	Meaning	
Innut	VREF+	CN1-1		
Input	VREF-	CN1-2	Speed Reference Input Signal	

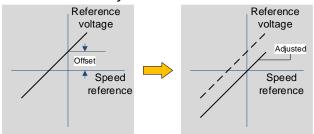
- NOTE
- Maximum input voltage: DC ± 10 V


When performing position control by a host controller such as a programmable controller, connect it to the speed reference output terminal of the host controller.

Setting speed reference input gain

Sets the Analogue voltage level for the speed reference (V-REF) necessary to operate the servomotor at the rated speed through Pn300.

Number	Name	Range	Unit	Default	When Enabled
Pn300	Analogue Speed Reference Input Gain	0 to 3000	rpm/V	150	Immediately


Speed Reference Input Example

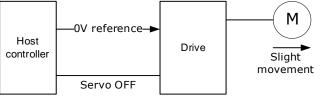
Pn300=150 [factory setting]:

Speed Reference Input	Direction	Motor Speed
+1V	Forward	150rpm
+5V	Forward	750rpm
-10V	Reverse	-1500rpm

5.9.2 Adjustment of Speed Reference Offset:

When speed control is used, even if the command is 0V (the command speed is 0 or haled), the servo motor may rotate at a slight speed. This is because there is a slight deviation in the reference inside the servo unit. This slight deviation is called "offset". When the servo motor is moving at a slight speed, it is necessary to use the offset adjustment function to eliminate the offset.

Auto Adjustment of Speed Reference Offset:


The auto adjustment of the Speed Reference Offset is a method for the servo drive to automatically adjust the voltage of the speed command after offset measurement.

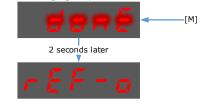
The measured offset will be saved in the servo drive. ٠ NOTE The offset is not a parameter, so the offset will not be reset even if the parameter factory value (Fn001) is restored.

Following provides the steps for auto adjustment of the Speed Reference Offset.

Step 1 Confirm that the servo drive is in the servo OFF state.

Step 2 Input OV command voltage from the host controller or external circuit.

Step 3 Press [M] key several times to select the Utility Function Mode.

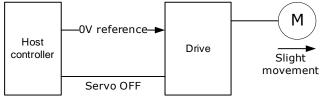


Step 4 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the function number Fn003.

Step 5 Press [\blacktriangleleft] key and the operating panel is displayed as follows.

Step 6 Press [M] key to execute automatic offset adjustment.

Step 7 Press the $[\blacktriangleleft]$ key to return to the display of the Fn003.


----End

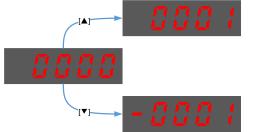
Manual Adjustment of Speed Reference Offset

The manual adjustment of the speed reference offset is a method that inputs the speed command offset directly for adjustment. Use the manual adjustment in the following situations.

- If a loop is formed with the host controller and the position error pulse is set to be zero when servo lock is stopped.
- To deliberately set the offset to some value.
- To check the offset data set in the speed reference offset auto adjustment mode.
- Following provides the steps for manual adjustment of the Speed Reference Offset.

Step 1 Input OV command voltage from the host controller or external circuit.

- Step 2 Press [M] key on operating panel for several times to select the Utility Function Mode.
- Step 3 Press $[\blacktriangle]$ key or $[\lor]$ key to select the function number Fn004.


Step 4 Press $[\blacktriangleleft]$ key and the operating panel is displayed as follows.

Step 6 Press the [M] key for one second to display the current speed reference offset.

Step 7 Press $[\blacktriangle]$ key or $[\triangledown]$ key to adjust the offset manually.

[Note] The adjustment range of the offset is -1024 to 1024.

Step 8 Press and hold the $[\blacktriangleleft]$ key for 1 second to return to the manual adjustment display.

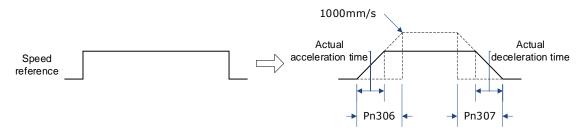
- 5Pd

Step 9 Press the [M] key to return to the display of the Fn004.

----End

5.9.3 Soft Start

The soft start function converts the stepwise speed reference inside the drive to a consistent rate of acceleration and deceleration.


First, the user needs to select the running curve of the speed reference via Pn310 (speed reference curve form).

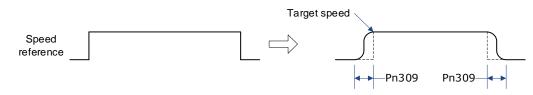
Parameter	Name	Setting	Description	When Enabled
		0	Ramp [factory setting]	
Pn310	Speed reference curve form	1	S curve	After
PIISTO		2	Primary filtering	restart
		3	Secondary filtering	

Use this function when you want to achieve smooth speed control (including internally set speed control).

When speed reference uses ramp form (Pn310=0)

The figure below shows the timing diagram of the speed reference in the ramp form (Pn310=0). Among them, Pn306 is the time interval for the motor to accelerate from the stop state to speed of 1000rpm, and Pn307 is the time interval for the motor from 1000rpm to the stop state.

Where:


Actual acceleration time = $\frac{\text{Target speed}}{1000} \times Pn306$

Actual deceleration time = $\frac{\text{Target speed}}{1000} \times Pn307$

Parameter	Name	Range	Unit	Default	When Enabled
Pn306	Soft Start Acceleration Time	0 to 10000	ms	0	Immediately
Pn307	Soft Start Deceleration Time	0 to 10000	ms	0	Immediately

When speed reference uses S-curve (Pn310=1)

The figure below shows the timing diagram of the speed reference in the S-curve (Pn310=1). Among them, Pn309 is the time interval for the motor to accelerate from the stop state to the target speed, or the time interval for the motor to decelerate from the target speed to the stop state.

Moreover, transition form of the S-curve via Pn311 can also be selected. User can try and choose the appropriate setting.

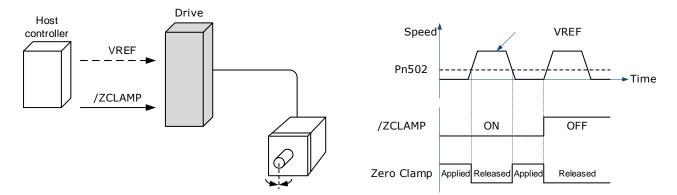
Parameter	Name	Range	Unit	Default	When Enabled
Pn309	S-curve rising time	0 to 10000	ms	0	Immediately
Pn311	S shape selection	0 to 3	_	0	After restart

When speed reference uses filtering (Pn310=2 or 3)

Pn308 (speed filter time constant) smooths the speed reference by applying a 1st-order delay filter can be applied to the Analogue speed reference (VREF) input.

This parameter is generally not set. If the set value is too large, the responsiveness may be reduced. It is recommended to set while confirming the responsiveness.

Parameter	Name	Range	Unit	Default	When Enabled
Pn308	Speed Reference Filter Time Constant	0 to 10000	ms	0	Immediately


5.9.4 Zero Clamp Function

When the zero clamp function is used for speed control, the upper controller is a system that forms a loop.

The zero clamp function locks the servo when the input voltage of the speed reference (VREF) drops below the set speed in the zero clamp level parameter (Pn502) while the zero clamp signal (/ZCLAMP) is ON (low level). By this moment, a loop is formed inside the servo drive, ignoring the speed reference.

Parameter	Name	Range	Unit	Default	When Enabled
Pn502	Zero Clamp Speed	0 to 3000	rpm	10	Immediately

The servo motor is fixed within ± 1 pulse of the zero clamp effective position. Even if it moves due to external force, it returns to the zero-clamp position.

Adjust the position loop gain in Pn104 (position loop gain) if the servomotor oscillates in the zero clamp state. If the gain switching function is used, adjusting Pn109 (2nd position loop gain) is also required.

Zero-Clamp Signal Allocations

The /ZCLAMP signal is not allocated in the factory setting, and the user needs to set it through Pn509 or Pn510.

Туре	Signal	Connector Pin Number	Signal State	Meaning
	/P-CON	CN1-15	ON (Low level)	Zero clamp function is active
	7P-CON	CNT-TS	OFF (High level)	Zero clamp function is inactive
Input	/ZCLAMP	MP Allocated via Pn509 or Pn510	ON Low level)	When the input voltage of the speed reference input (VREF) falls below the speed set by Pn502 (zero-clamp speed), the zero clamp function will be validated.
			OFF (High level)	Zero clamp function is inactive

Setting Zero Clamp Function

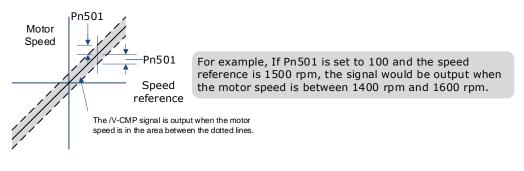
When the control mode (Pn005.1) is set to A, the zero clamp function is active when the following two conditions are satisfied

- Low level when /P-CON is ON
- The speed reference (VREF) drops below the set value of Pn502

Parameter	Setting	Meaning	When Enabled
Pn005.1	А	Control mode selection: Speed control (Analogue reference) \leftrightarrow Zero clamp control	After restart

5.9.5 Speed Coincidence Detection (/VCMP) Signal

The Speed Coincidence Detection (/VCMP) Signal is the signal output when the speed of the servomotor coincides with the reference speed. It is used in occasions such as interlocking with the upper controller. This output signal can only be used during speed control.

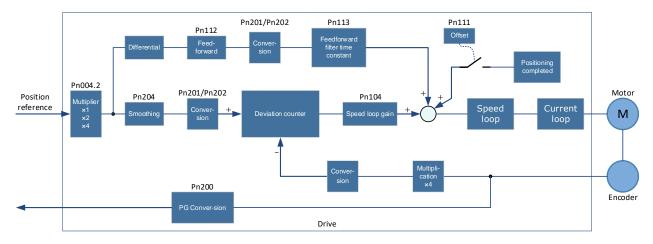

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Output /VCM		CN1 11 12	ON (low level)	Speed coincides.
	/ VC/MP	CN1-11, 12	OFF (high level)	Speed does not coincide.

• In position control, CN1-11, 12 output /COIN (positioning completion) signal.

This output signal can be distributed to other output terminals via Pn511. For details, please refer to "5.7.2 Output Signal Allocation".

No.	Name	Range	Unit	Default	When Enabled
Pn501	Speed Coincidence Error	0 to 100	rpm	10	Immediately

The VCMP signal is output when the difference between the motor speed and the reference speed drops below the set speed of Pn501.

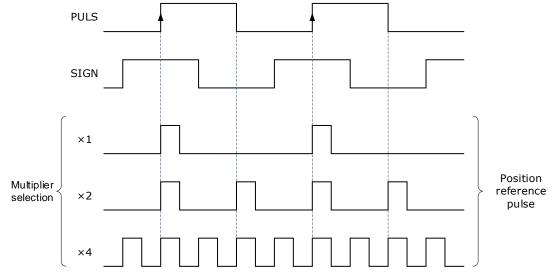


5.10 Position Control

Use Pn005.1 to select Position Control:

Parameter	Setting	Meaning	When Enabled
Pn005.1	1	Control mode selection: position control (pulse train reference)	After restart

The control block diagram for position control is shown in figure below.


5.10.1 Basic Settings of Position Control

Setting position reference input form

Parameter Setting	Multiplier	Input form	Forward Reference	Reverse Reference
Pn004.2 = 0	_	SIGN + PULS [Positive Logic]	PULS	PULS
Pn004.2 = 1	_	CW + CCW [Positive Logic]		CW L level
Pn004.2 = 2	1	90° phase	90°	90°
Pn004.2 = 3	2	difference two-	Phase A	Phase A
Pn004.2 = 4	4	phase pulse	Phase B	Phase B

Use Pn004.2 to set the input form of the position reference.

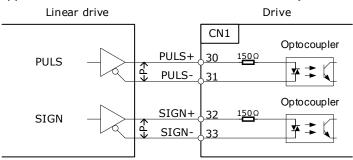
The input multiplier can be set when the 90° phase difference is of two-phase pulse reference form.

Also, the user can choose whether to invert the PULS signal and SIGN signal using Pn004.3.

Parameter	Setting	Meaning	When Enabled
	0 Both PULS reference and SIGN reference are not inverted		
D=004.2	1	PULS reference is not inverted, but SIGN reference is inverted	After
Pn004.3	2	PULS reference is inverted, but SIGN reference is not inverted	restart
	3	Both PULS reference and SIGN reference are inverted	

Electrical specifications for position reference input

Reference Pulse Signal Form	Electrical Specification	Remark	
SIGN + PULS Max reference frequency: 500kpps (For open-collector output: 200kpps)	SIGN	t1, t2, t3, t7 \leq 0.1µs t4, t5, t6 \geq 3.0µs $\tau \geq$ 1.0µs $\tau \div$ T \leq 0.5	The sign (SIGN) is a forward rotation reference at H level, and a reverse rotation reference at L level.
CW + CCW Max reference frequency: 500kpps (For open-collector output: 200kpps)	CCW ti+ ti CW Forward reference Forward reference ti - ti ti - ti - ti - ti - ti - ti - ti - ti -	t1, t2≤0.1µs t3≥3µs τ≥1.0µs τ÷T≤0.5	_
90° phase difference two-phase pulse (Phase A + Phase B) Max reference frequency (before frequency multiplier): ×1 input pulse multiplier: 500kpps ×2 input pulse multiplier: 400kpps ×4 input pulse multiplier: 200kpps	A相 tt+ B相 Forward reference Phase B leads phase A by 90° Phase A by 90°	t1, t2≤0.1μs τ≥1.0μs τ÷T=0.5	Select the frequency multiplier via Pn004.2.


Connection Example

The pulse train output form of the reference controller includes the following.

- Linear drive
- +24V open-collector output
- +12V/+5V open-collector output


Connection Example for Linear drive Output

Applicable linear driver: SN75174 manufactured by TI or MC3487 or the equivalent.

←P→ represents a twisted-pair cable

Connection Example for Open-Collector Output

5.10.2 Function and Setting of Position Error Clear (/CLR) Signal

Туре	Signal Name	Connector Pin Number	Meaning
Input	/CLR	CN1-40	Error counter clear

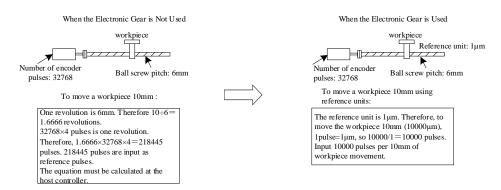
Allocation of Position Error Clear Signal

When the /CLR signal is set to low level, clear error counter:

- The error counter inside the servo drive is set to"0"
- Position loop operation is disabled.

Setting the Clear Signal Mode

In position control mode, pulses will be still presented in the servo drive when servo OFF, thus it should be cleared when servo drive is turned ON (S-ON). Setting Pn004 to choose whether clearing the pulses automatically when servo OFF.


Parameter	Setting	Meaning	When Enabled
	0	Clear the error pulse when S-OFF, and not clear when over-travel.	
Pn004.1	1	Do not clear the error pulse.	After restart
	2	Clear the error pulse when servo is OFF or over-travel (except for zero clamp)	

5.10.3 Electronic Gear

Function Overview

The electronic gear enables the workpiece travel distance per input reference pulse from the reference controller to be set to any value.

One reference pulse from the reference controller, i.e., the minimum position data unit, is called "1 reference unit".

If the mechanical reduction ratio between the motor shaft and the load side is set to m/n, the setting value of the electronic gear ratio can be calculated according to following formula. (When the servomotor rotates m revolutions, the load shaft rotates n revolutions)

Electronic Gear
$$\frac{B}{A} = \frac{Pn201}{Pn202} = \frac{\text{Encoder pulse number} \times 4}{\text{Travel distance per load shaft revolution}} \times \frac{m}{n}$$

	٠	Range of electronic gear ratio: $0.01 \leq$ electronic gear ratio (B/A) \leq 100
NOTE NOTE		If the electronic gear ratio is outside this range, the servo drive will not operate properly. In this case, modify the load configuration or reference unit.
	•	Divide the numerator and denominator into integers within the setting range when it exceeds the setting range.

2nd Electronic Gear Switching

Switch between electronic gear ratio numerator 1 (Pn201) and electronic gear ratio numerator 2 (Pn203) according to the external/P-CON signal. The switching sequence is determined by the setting of Pn002.0. This function is enabled by user parameter Pn001.3.

Related Parameters

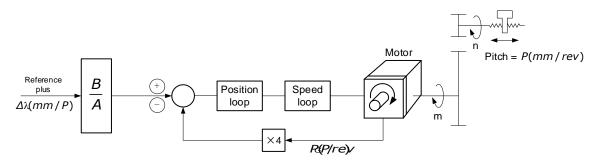
Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Input /P-CON			ON (low level)	Switch to the 2 nd electronic gear
	CN1-15	OFF (high level)	Switch to the 1 st electronic gear	

Number	Name	Range	Unit	Default	When Enabled
Pn201	16-bit 1 st electronic gear numerator	1 to 100000	-	1	After restart
Pn202	16-bit electronic gear denominator	1 to 100000	_	1	After restart
Pn203	16-bit 2 nd electronic gear numerator	1 to 100000	_	1	After restart

Setting Steps

Set the electronic gear ratio as per the steps and instructions described in the table below.

Step	Operation	Description
1	Check machine specifications.	Check the deceleration ratio, ball screw pitch and pulley diameter.
2	Check the number of encoder pulses.	Check the number of encoder pulses for the Servo motor used.
3	Determine the reference unit used.	Determine the reference unit from the host controller, considering the machine specifications and positioning accuracy.
4	Calculate the travel distance per load shaft revolution.	Calculate the number of reference units necessary to turn the load shaft one revolution based on the previously determined reference units.
5	Calculate the electronic gear ratio.	Use the electronic gear ratio equation to calculate the ratio (B/A).
6	Set parameters.	Set parameters using the calculated values.


Setting Examples

		Machine Structure		
Step	Operation	Ball Screw Reference unit: 0.001mm Load shaft I7-bit encoder Ball screw pitch: 6mm	Disc Table Reference unit: 0.1° Deceleration ratio: 3: 1 Load shaft 17-bit encoder	Belt and Pulley Reference unit: 0.01mm Load shaft Deceleration ratio: 2: 1 Pulley diameter: 2: 1 F 100mm 17-bit encoder
1	Check machine specifications	 Ball screw pitch:6mm Deceleration ratio: 1/1 	 Rotation angle per revolution: 360° Deceleration ratio: 3/1 	 Pulley diameter: 100 mm (pulley circumference: 314mm) Deceleration ratio: 2/1
2	Encoder	17-bit: 32768P/R	17-bit: 32768P/R	17-bit: 32768P/R
3	Determine the reference unit used	1 reference unit: 0.001mm (1µm)	1 reference unit: 0.1°	1 reference unit: 0.01mm
4	Calculate the travel distance per load shaft revolution	6mm/0.001mm=6000	360°/0.1°=3600	314mm/0.01mm=31400
5	Calculate the electronic gear ratio	$\frac{B}{A} = \frac{32768 \times 4}{6000} \times \frac{1}{1}$	$\frac{B}{A} = \frac{32768 \times 4}{3600} \times \frac{3}{1}$	$\frac{B}{A} = \frac{32768 \times 4}{31400} \times \frac{2}{1}$
6	Set parameters	Pn201 = 131072 Pn202 = 6000	Pn201 = 393216 Pn202 = 3600	Pn201 = 262144 Pn202 = 31400
7	Final result	Pn201 = 32768 Pn202 = 1500	Pn201 = 32768 Pn202 = 300	Pn201 = 32768 Pn202 = 3925

- Reduce the fraction (both numerator and denominator) if the calculated result will not be within the setting range.
- For example, reduce the above numerators and denominators by four or other numbers to obtain the final results in step 7 and complete the setting. This parameter is enabled when you use an absolute encoder.

Electronic Gear Ratio Equation

NOTE

Where: ΔI is the reference unit; P_G is the encoder pulse; P is the pitch of the ball screw; m/n is the reduction ratio.

$$\frac{n \times P}{\Delta \ell} \times \frac{B}{A} = 4 \times P_G \times m \Longrightarrow \frac{B}{A} = \frac{4 \times P_G \times m \times \Delta \ell}{n \times P} = \frac{4 \times P_G}{\frac{P}{\Delta \ell}} \times \frac{m}{n}$$

Set A and B with the following parameters Pn202 and Pn201.

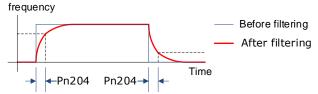
5.10.4 Smoothing

The smoothing filters the reference pulse input to make the travel of the servomotor smoother. This function is more effective in the following cases.

- When the host controller that outputs a reference that cannot perform acceleration/deceleration processing.
- When the reference pulse frequency is too low.
- When the conversion of position reference is large $\left(\frac{Pn201}{Pn202} \ge 10\right)$

• This setting has no effect on the travel distance (reference pulse number).

Set the position reference filtering method using Pn205 (position reference filter form selection).


Number	Name	Setting	Meaning	When Enabled
Position Reference		0 [Factory Setting]	Primary filtering to position reference	After
Pn205	Filter Form Selection	1	Secondary filtering to position reference	restart

Then set the filter time of the position reference using Pn204 (position reference filter time constant).

Number	Name	Range	Unit	Default	When Enabled
Pn204	Position Reference Filter Time Constant	0 to 32767	0.1ms	0	Immediately

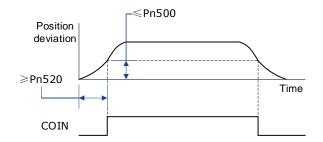
The figure below shows the 1st order filtering for position reference:

Reference pulse

After changing this parameter, the changed parameter will be effective after user will re-input the position reference next time and input the position error clear (CLR) signal.

5.10.5 Positioning Completion (/COIN) Signal

This signal indicates that servomotor movement has been completed during position control. Use the signal to confirm that positioning has been completed at the host controller.

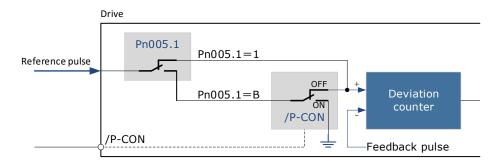

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
		CN1-11, 12	ON (low level)	Positioning has been completed.
Output	Output /COIN CN1-11		OFF (high level)	Positioning is not completed.

[Note] CN1-11, 12 output the VCMP (speed coincidence) signals during speed control.

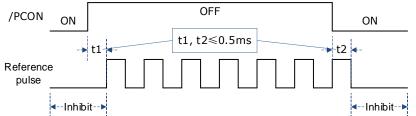
This output signal can be allocated to an output terminal with parameter Pn511. Refer to "0 Output Signal Allocation".

The positioning completion (COIN) signal is output when the difference (position error pulse) between the number of reference pulses output by the host controller and the travel distance of the servomotor is less than the value set in tPn500, and the stabilization time is more than the value of Pn520 (position completion time).

Number	Name	Range	Unit	Default	When Enabled
Pn500	Positioning Error	0 to 5000	μm	10	Immediately
Pn520	Position Completion Time	0 to 60000	0.1ms	500	Immediately



5.10.6 Reference Pulse Inhibit Function (INHIBIT)


This function stops (inhibits) the Drive from counting input pulses during position control. When this function is active, the Drive enters a state where it cannot receive reference pulse input.

When this function is used, it is necessary to set Pn005.1=B.

Parameter	Setting	Meaning	When Enabled
Pn005.1	В	Control mode selection: position control (pulse train reference) ↔ Position control (pulse inhibit)	After restart

Inhibit (INHIBIT) is switched via/P-CON signal:

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
			ON (low level)	Stop reference pulses counting
Input	/P-CON	CN1-15	OFF (high level)	Start reference pulse count

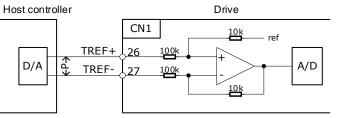
5.11 Torque Control

This mode inputs a torque reference in the form of an Analogue voltage reference to the Drive, and controls the operation of the servomotor using a torque proportional to the input voltage. This control mode needs to be selected via Pn005.1 and Pn409.

Parameter	Setting	Meaning	When Enabled
Pn005.1	2	Control mode selection: torque control	After restart
Pn409	0	Use of external Analogue quantity voltage reference requires the external signal connection	Immediately

5.11.1 Basic Settings of Torque Control

Specification of Torque Reference Signal Input

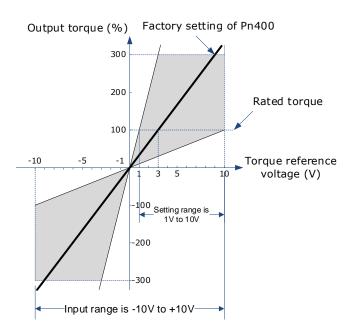

To apply torque control to the servomotor with a torque proportional to the input voltage, it is necessary to set the torque reference input signal.

Туре	Signal Name	Connector Pin Number	Meaning
Input	TREF+	CN1-26	Torque Deference Input Cignal
Input	TREF-	CN1-27	Torque Reference Input Signal

NOTE

Max input voltage: DC \pm 10V

When performing position control by a host controller such as a programmable controller, connect it to the Analogue reference output terminal of the host controller.

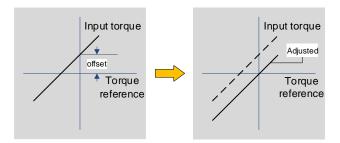

NOTE $\leftarrow P \rightarrow$ represents a twisted-pair cable. To suppress noise, be sure to use twisted-pair cables.

Setting Torque Reference Input Gain

•

Pn400 is used to set the Analogue voltage value of the torque reference (TREF) that operates the servomotor at the rated speed.

Number	Name	Range	Unit	Default	When Enabled
Pn400	Torque Reference Gain	10 to 100	0.1V / 100%	33	Immediately


Torque Reference Input Example

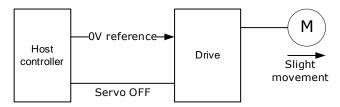
When Pn400 = 30:

Torque Reference Input	Travel Direction	Torque
+3V	Forward	Rated torque
+1V	Forward	1/3 rated torque
-1.5V	Reverse	1/2 rated torque

5.11.2 Adjustment of Torque Reference Offset

When using torque control, the servomotor may rotate slowly even when 0V (reference speed is 0 or stop) is specified as the Analogue reference voltage. This occurs when there's slight offset for internal reference of servo drive. Such slight offset is called "Offset". When the servo motor is moving at a low speed, it is necessary to use the offset adjustment function to eliminate the offset.

Auto Adjustment of the Torque Reference Offset


The auto adjustment of torque reference offset automatically measures the offset and adjusts the torque reference voltage automatically.

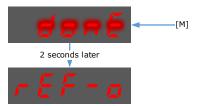
\sim	The measured offset will be saved in the servo drive.	
NOTE NOTE	• The offset is not a parameter, so it will not be reset even if the parameter factory value (Fn001) is restored.	

The following provides the operating steps for auto adjustment of the torque reference offset.

Step 1 Make sure that the servo drive is in the servo OFF state.

Step 2 Input the OV reference voltage from the host controller or external circuit.

Step 3 Press the [M] key to select the utility function mode.

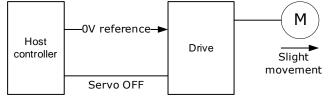

Step 4 Press the $[\blacktriangle]$ or $[\triangledown]$ key to select the utility function number Fn003.

Step 5 Press $[\blacktriangleleft]$ key and the operating panel is displayed as follows.

Step 6 Press the [M] key, and the reference offset will be automatically adjusted.

Step 7 Press the [◀] key to return to the utility function mode display Fn003.

----End


Manual Adjustment of the Torque Reference Offset

The manual adjustment of torque reference offset directly inputs the torque reference offset for adjustment. Manual adjustment is used in the following cases.

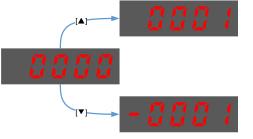
- If a position loop is formed with the host controller and the error is zeroed when servo loop is stopped.
- To deliberately set the offset to some value.
- Use this mode to check the offset data that was set in the auto adjustment mode of the torque reference offset.

The following provides the operating steps for manual adjustment of the torque reference offset.

Step 1 Input the OV reference voltage from the host controller or external circuit.

Step 2 Press the [M] key on the operating panel to select the utility function mode.

Step 3 Press the $[\blacktriangle]$ or $[\triangledown]$ key to select the utility function number Fn004.


Step 4 Press $[\blacktriangleleft]$ key and the operating panel is displayed as follows.

- Step 5 Turn on the S-ON signal to make the servo drive enter the servo ON state.
- Step 6 Press and hold the [M] key for 1 sec or longer, the operation panel will display the current torque reference offset.

Step 7 Press the $[\blacktriangle]$ or $[\triangledown]$ key to adjust the offset manually.

[Note] The adjustment range of the offset is -1024 to 1024.

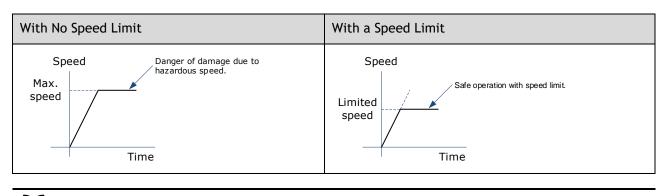
Step 8 Press and hold the [\blacktriangleleft] for 1 sec, and return to the display of manual adjustment.

Step 9 Press the $[\blacktriangleleft]$ key to return to the function number display Fn004.

----End

5.11.3 Setting Torque Reference Input Filter

It is possible to apply a 1st-order delay filter to the Analogue torque reference (VREF) input via Pn105 (torque reference filter time constant), to smooth the torque reference.


This parameter is generally not set. If the set value is too large, the responsiveness may be reduced. It is recommended to set while confirming the responsiveness.

Number	Name	Range	Unit	Default	When Enabled
Pn105	Torque Reference Filter Time Constant	0 to 2500	0.01ms	50	Immediately

5.11.4 Speed Limit During Torque Control

The speed limit during torque control is a function used to limit the speed of the servomotor in order to protect the machine.

For torque control, the servomotor is controlled to output the specified torque, but the motor speed is not controlled. Therefore, if a reference torque is input that is larger than the machine torque, the speed of the servomotor may increase greatly. If that may occur, use this function to limit the speed.

NOTE

The actual limit of motor speed depends on the load conditions on the motor.

Selection of Speed Limit Detection

•

Select the speed limit way using Pn001.

Parameter	Setting	Meaning	When Enabled
	0	Use the set value of Pn408 as the speed limit value.	
Pn001.1	1	The smaller of the speed value corresponding to the Vref input Analogue voltage, and the Pn408 setting value is used as the speed limit value.	After restart

Internal Speed Limit Function

When Pn001.1=0, the internal speed limit function is selected.

In this case, user needs to set Pn408 as the limit value of the maximum motor speed. If the set value of Pn408 exceeds the maximum motor speed, the speed limit value is the maximum speed of the motor.

Number	Name	Range	Unit	Default	When Enabled
Pn408	Speed Limit During Torque Control	0 to 6000	rpm	1500	Immediately

External Speed Limit Function

When Pn001.1=1, the external speed limit function is selected. User can limit the speed via the VREF input signal and the set value of Pn408.

Туре	Signal Name	Connector Pin Number	Meaning
loout	VREF+	CN1-1	Speed reference input signal
Input	VREF-	CN1-2	speed reference input signat

```
NOTE NOTE
```

• The max. input voltage: DC±10V.

Number	Name	Range	Unit	Default	When Enabled
Pn408	Speed Limit During Torque Control	0 to 6000	rpm	1500	Immediately

In torque control, the motor speed limit value is controlled by Analogue reference:

- When Pn001.1=1, the smaller of the speed limit input from VREF and the set value of Pn408 is valid.
- The voltage value input as the limit value depends on the set value of Pn400, not the polarity.

5.11.5 Internal Torque Contact Control

The internal torque contact control is a method to control the operation of the servo motor by the torque reference generated inside the servo drive. This control mode is selected using Pn005.1 and Pn409.

Parameter	Setting	Meaning	When Enabled
Pn005.1	2	Control mode selection: torque control	After restart
Pn409	1	Use of internal torque contact reference does not require external signal connection	Immediately

Setting Internal Torque Reference

To select a torque contact reference value, user needs to allocate TORQ_JD1 and TORQ_JD2.

Туре	Signal Name	Connector Pin Number	Meaning
Input	TORQ_JD1	Allocation via Pn509 or Pn510	Internal torque contact 1
Input	TORQ_JD2		Internal torque contact 2

The different states of TORQ_JD1 and TORQ_JD2 can be switched to select the corresponding torque contact parameters.

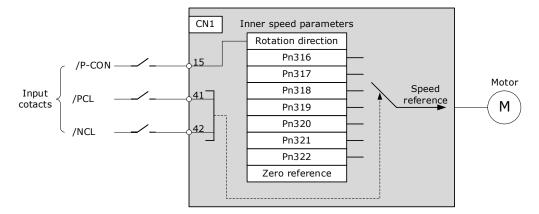
TORQ_JD1	TORQ_JD2	Torque Reference Parameter
0	0	Pn410 (torque contact 1)
1	0	Pn411 (torque contact 2)
0	1	Pn412 (torque contact 3)
1	1	Pn413 (torque contact 4)

Number	Name	Range	Unit	Default	When Enabled
Pn410	Torque Contact 1	-400 to 400	%	0	Immediately
Pn411	Torque Contact 2	-400 to 400	%	0	Immediately
Pn412	Torque Contact 3	-400 to 400	%	0	Immediately
Pn413	Torque Contact 4	-400 to 400	%	0	Immediately

Setting Internal Torque Reference Limit

User needs to allocate TORQ_SPEED_LIMIT1 and TORQ_SPEED_LIMIT2 when using the torque reference limit, so as to select the required speed limit.

Туре	Signal Name	Connector Pin Number	Meaning
Input	TORQ_SPEED_LIMIT1	Allocation via Pn509 or	Internal torque reference limit 1
Input	put p		Internal torque reference limit 2


The different states of TORQ_SPEED_LIMIT1 and TORQ_SPEED_LIMIT2 can be switched so as to select the corresponding torque contact parameters.

TORQ_SPEED_LIMIT1	TORQ_SPEED_LIMIT2	Torque Reference Parameter
0	0	Pn316 (speed limit 1)
1	0	Pn317 (speed limit 2)
0	1	Pn318 (speed limit 3)
1	1	Pn319 (speed limit 4)

Number	Name	Range	Unit	Default	When Enabled
Pn316	Speed Limit 1	-6000 to 6000	rpm	100	Immediately
Pn317	Speed Limit 2	-6000 to 6000	rpm	200	Immediately
Pn318	Speed Limit 3	-6000 to 6000	rpm	300	Immediately
Pn319	Speed Limit 4	-6000 to 6000	rpm	-100	Immediately

5.12 Internally Set Speed Control

It is a function that allows to set up to 7 motor speeds in the internal parameters of the servo drive, and selects the speed and moving direction from them through external input signals for speed control and operation. Since it is controlled by the internal parameters of the servo drive, a speed generator and pulse generator are not required to be installed externally.

5.12.1 Basic Settings of Internally Set Speed Control

Setting Input Signal

The input signals for switching the operating speed are listed in table below.

Туре	Signal Name	Connector Pin Number	Meaning
	P-CON	CN1-15	Switch the moving direction of the servo motor.
Input	PCL	CN1-41	Select the internally set speed.
	NCL	CN1-42	Select the internally set speed.

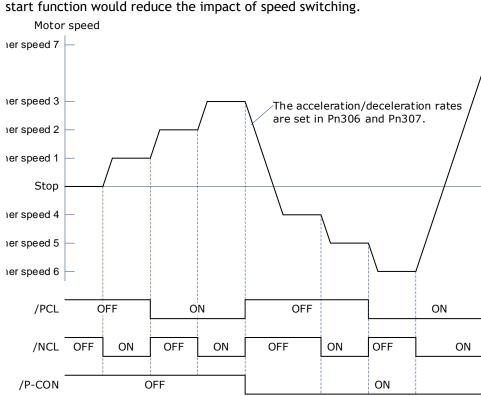
Selection of Internally Set Speed Control

Use Pn005.1 to select the torque control:

Parameter	Setting	Meaning	When Enabled
Pn005.1	3	Control mode selection: speed control (contact reference) ↔ speed control (zero reference)	After restart

5.12.2 Speed Setting of Internally Set Speed

Number	Name	Range	Unit	Default	When Enabled
Pn316	Internally Set Speed 1	-6000 to 6000	rpm	100	Immediately
Pn317	Internally Set Speed 2	-6000 to 6000	rpm	200	Immediately
Pn318	Internally Set Speed 3	-6000 to 6000	rpm	300	Immediately
Pn319	Internally Set Speed 4	-6000 to 6000	rpm	-100	Immediately
Pn320	Internally Set Speed 5	-6000 to 6000	rpm	-200	Immediately
Pn321	Internally Set Speed 6	-6000 to 6000	rpm	-300	Immediately
Pn322	Internally Set Speed 7	-6000 to 6000	rpm	500	Immediately


5.12.3 Switching Internally Set Speed by Input Signal

Use ON/OFF combinations of the following input signals to select the internally set speeds.

Signal		Motor Travel	Operating Speed			
/P-CON	/PCL	/NCL	Direction	Operating speed		
	OFF	OFF		Switch to speed control (zero reference).		
OFF	OFF	ON	Forward	Run at internally set speed 1 as set by Pn316.		
UFF	ON O	OFF	ruiwalu	Run at internally set speed 2 as set by Pn317.		
	ON	ON		Run at internally set speed 3 as set by Pn318.		
	OFF	OFF		Run at internally set speed 4 as set by Pn319.		
	OFF	ON	Povorso	Run at internally set speed 5 as set by Pn320.		
ON	ON	OFF	Reverse	Run at internally set speed 6 as set by Pn321.		
	ON	ON		Run at internally set speed 7 as set by Pn322.		

5.12.4 Running Example of Internally Set Speed Control

Figure below shows an example of operation during internally set speed control. This example is the operation method when internally set speed control and soft start are used in combination. Using the soft

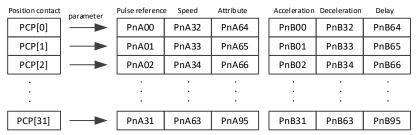
start function would reduce the impact of speed switching.

5.13 PCP Control

This function uses the 32 program contacts (PCP[0] to PCP[31]) preset in the drive for purpose of position control and PJOG operation.

When PCP control is selected, the drive will be controlled by the internal pulse generator to generate reference pulses based on the settings of the related parameters. In this case, the signal input from an external linear drive is not required.

5.13.1 PCP Control Selection


Select PCP control by setting Pn005.1=C.

Parameter	Setting	Meaning	When Enabled
Pn005.1	С	Control mode selection: position control (contact reference)	After restart

5.13.2 Paramter Setting of PCP Control

Parameter Setting of Contact

Servo drive allows to set a total of 32 point references (PCP[0] to PCP[31]). Each contact reference includes pulse reference, speed, attribute, acceleration/deceleration and delay.

The pulse reference defines the number of pulses of the contact, the speed defines the running speed of the contact, the attributes defines the motion attribute of contact, the acceleration and jerk define the acceleration/deceleration of the contact, and the delay defines the delay time after the contact reference is sent.

Use Pn014.1to set the IO trigger mode.

Parameter	Setting	Meaning	When Enabled
	0	Edge trigger mode: Contact is triggered at the falling edge of the /PCON signal, and the servo then reads the contact number	
Pn014.1	1	 Level trigger mode: Control PCP when the /PCON signal is in low level, and the servo reads the contact number. Operate PJOG when /PCON is in high level. 	After restart

• Following shall be noted when setting Pn014.1 = 1.

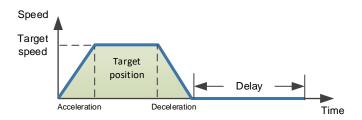
• Only absolute command (ABS) is supported. When setting the contact as a relative command (REL) or incremental command (INC), the contact will not be executed.

- Automatic loading of the next contact is not supported.
 - When /PCON is pulled high during the contact operation, you need to wait for the end of the contact operation before starting PJOG operation.

The attributes in each contact reference are set by the corresponding contact reference with the same meaning. For example, the setting of the attribute parameter PnA64 of PCP[0] is described as follows.

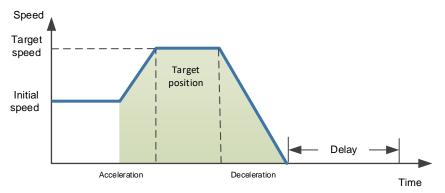
NOTE

Parameter	Meaning			
PnA64.0	CMD: Position Control Reference Mode 0: Absolute Command (ABS): The target position is the value of t position command. 1: Relative Command (REL): The target position is the motor's current position plus the value of the position command. 2: Incremental Command (INC): The target position is the target position of previous position command plus the value of current position command. Motor position - Target Position -			
	Increment Reference (INC) 0 1000 2000 3000 4000 5000 6000 7000 8000			
PnA64.1	INS: The current position contact is interrupted when this contact is triggered.			
PnA64.2	FLOW: Allow the next command to be loaded after current node is executed. The next command is the contact triggered when current node is running.			
PnA64.3	AUTO: Execution by order. After this contact program is completed, the next contact will be executed in order.			

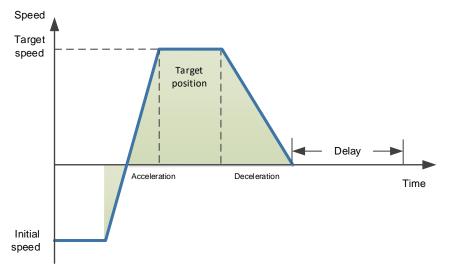

INS	FLOW	AUT	Interpretation	Diagram
~	0	0	With the highest priority. When the attribute of the currently triggered contact is of interrupt, it updates the target position by interrupting the previous contact directly.	7 INS:1 4 immediately 7 V 4 7 t

INS	FLOW	AUT	Interpretation	Diagram
×	~	0	Priority inferior to Interrupt. When the attribute of the currently triggered contact can be accessed, a new contact is allowed to access upon the execution of this contact and after the delay command is ended. If there is no new insertion, it is judged whether to load the next automatically.	7 INS:0 4 FLOW: 1 v 4 r 7 t
×	×	✓	With the lowest priority. When there's no contact that needs to be overlapped for current contact, and is not interrupted, the next contact is executed by order. If a new interruptible contact is triggered when this contact	4 5 FLOW:0 AUTO:1 4 5 FLOW:1, no node wait
√, overlap is required if no contact	overlap is required if no	overlap is required if no	is running, it will be interrupted. If a new non-interrupted contact is triggered while the contact is running, the new triggered contact is then discarded.	AUTO:1
	×	When current contact is running, no new contact	running, no new contact other than Interrupt is	4 Waiting for the trigger N FLOW: 0 AUTO:0 Waiting for the trigger N 4 Waiting for the trigger N FLOW: 1, no N
×	√, overlap is required if no contact	×	accepted. It then judges whether the new contact is triggered until the current contact running is ended.	v v v v v v v v v v v v v v v v v v v

5.13.3 Contact Command Model


Position Command

The acceleration/deceleration are trapezoidal according to the given position and the acceleration/deceleration planning path, and can be set separately.



The position planning during Interrupt is to plan the position reference on the basis of the original reference speed.

• The initial speed is in the same direction with the planned position

• The initial speed is the direction opposite to the planned position

PJOG Command

It is valid under PCP contact control. PJOG can only be performed after the contact operation is ended.

At the same time, the contact cannot be triggered during PJOG operation.

PJOG curve is a trapezoidal, Pn305 is for the speed, Pn306 is for the acceleration, and Pn307 is for the deceleration.

Halt Command

This function allows to stop running through the external input signal STOP.

It is valid under PCP contact control. It can stop operation through the IO port during PJOG and PCP contact operation.

Input STOP signal (active at low level) to stop the current motion state, decelerate the speed to zero as per the deceleration set by Pn719. All control states are cleared after stopping, and cannot be restored to the original motion state. They shall be triggered again.

Number	Name	Range	Unit	Default	When Enabled
Pn324	Time required for trapezoidal deceleration at 1000rpm under indexing function	0 to 10000	ms	100	Immediately

5.13.4 Contact Trigger

The contact uses digital IO port trigger mode, by which users can trigger using the commands of POSO, POS1, POS2, POS3, POS4 and PCON.

The relationships are as defined as follows:

IO trigger mode (/PCON active low)	Contact attribute	Trigger signal
Edge	Absolute command (ABS)	/PCON↓
	Relative command (REL)	/PCON↓
	Relative command (REL)	/PCON↓
	PJOG	/PJOG+ or /PJOG- active when no contact is in operation
Level	Absolute command (ABS)	/PCON active
	Relative command (REL)	Not triggered
	Relative command (REL)	Not triggered
	PJOG	/PCON inactive, /PJOG+ or /PJOG- active

The corresponding IO relationships for each contact number are as listed below:

Position Command	POS4	POS3	POS2	POS1	POS0	Triggered Signal
PCP[0]	0	0	0	0	0	/PCON↓
PCP[1]	0	0	0	0	1	/PCON↓
PCP[2]						/PCON↓ or /PCON active
PCP[30]	1	1	1	1	0	/PCON \downarrow or /PCON active
PCP[31]	1	1	1	1	1	/PCON↓ or /PCON active

* PCP[0] is available by setting parameter Pn014.2=1; Contact 0 is not executed

5.13.5 Software Limits

Compare the current motor running position of the Un009 with the position limit. It stops running if out of limits, and the servo enters the warning state, the servo is still under excitation status, the panel display shows A.XX in flashing status, and the upper computer can read the current warning number (same address as the alarm number) via Modbus. SoftOt output is available if the IO output signal is configured.

In case of a soft limit, there is no need to manually clear the warning but set the reverse motion command to exit the limit state.

Relevant alarm codes:

Alarm code	Name & specification	
A.D7	Soft Limit, Forward	
A.D8	Soft Limit, Reverse	

Parameter	Name & specification	Unit	Setting range	Factory default	Re-power on
Pn015	Soft limit enable	-	0x0000~0x0001	0	Required
Pn325	Soft limit position 1	Ρ	-2,000,000,000~2,000,000,000	2,000,000,000	Not required
Pn326	Soft limit position 2	Ρ	-2,000,000,000~2,000,000,000	-2,000,000,000	Not required

When Pn015.0 = 0, the soft limit function is not enabled

When Pn015.0 = 0, the soft limit function is enabled and warning A.D7 occurs if the current position Un009 is greater than the range of Pn325-Pn326. Warning A.D8 occurs if the current position Un009 is less than the range of Pn325-Pn326.

When Pn325 < Pn326, the two values are exchanged and the limit range is Pn326~Pn325.

5.13.6 Partial In-place Output

The Contacts 1 to 7 in-place outputs can be individually monitored.

The Pn511 outputs can be configured as follows:

[A]REMOTE0\PCP_COIN0

[B]REMOTE1\PCP_COIN1

[C]REMOTE2\PCP_COIN2

Contact No.	PCP_COIN0	PCP_COIN1	PCP_COIN2	In-place information
хх	0	0	0	Contacts 1 to 7 not in place
PCP[1]	0	0	1	Contact 1 in place
PCP[2]	0	1	0	Contact 2 in place
PCP[3]	0	1	1	Contact 3 in place
PCP[4]	1	0	0	Contact 4 in place
PCP[5]	1	0	1	Contact 5 in place
PCP[6]	1	1	0	Contact 6 in place
PCP[7]	1	1	1	Contact 7 in place

5.13.7 When Overtravel Occurs

During contact operation: When an overtravel occurs, the contact will enter the limit state and exit the contact operation. Un024 is displayed as the current given position.

- If stopping by P-OT, exit the POT by giving a reverse position. The reverse position must be smaller than the current given one.
- If stopping by N-OT, exit NOT by giving a positive position. The positive position must be greater than the current given one.

When PJOG is running:

- PJOG+ can reverse as PJOG- when it stops by encountering P-OT.
- PJOG- can reverse as PJOG- when it stops by encountering N-OT.

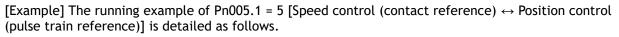
5.13.8 Display

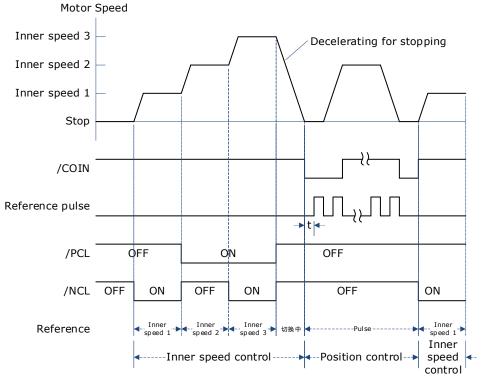
Un024 (PCP target position)

- Under non-contact operation state, STOP, PJOG and Servo-off are displayed as the given motor position.
- Under contact operation state, it is displayed as the current target position of PCP.

5.14 Selection of Control Mode Combinations

The servo drive can combine the two control modes and switch between them. The control mode combinations can be selected by setting "4" to "B" in Pn005.1.


Parameter	Setting	Control Mode Combinations	When Enabled
Pn005.1	4	Speed control (contact reference) \leftrightarrow speed control (Analogue reference)	After restart
	5	Speed control (contact reference) \leftrightarrow position control (pulse train reference)	
	6	Speed control (contact reference) \leftrightarrow torque control	
	7Position control (pulse train reference) ↔ speed control (Analogue reference)		


Parameter	Setting	Control Mode Combinations	When Enabled
	8	Position control (pulse train reference) \leftrightarrow torque control	
	9 Torque control ↔ Speed control (Analogue reference)		
	А	Speed control (Analogue reference) \leftrightarrow zero clamp control	
	В	Position control (pulse train reference) \leftrightarrow Position control (pulse prohibited)	

When Pn005.1=4, 5 and 6

Switch the control mode by using /P-CON, /PCL and /NCL signals.

Signal			Running Speed	Motor Traveling		
/P-CON	/PCL	/NCL	Pn005.1 = 4	Pn005.1 = 5	Pn005.1 = 6	Direction
	OFF	OFF	Speed Control	Position Control	Torque Control	
OFF	OFF ON OFF		Run at internally s	et speed 1 as set by	Pn316.	F
UFF			Run at internally s	Forward		
	ON	ON	Run at internally s			
	OFF	OFF	Run at internally s			
ON	OFF	ON	Run at internally s	et speed 5 as set by	Pn320.	Reverse
	ON	OFF	Run at internally s	Run at internally set speed 6 as set by Pn321.		
	ON	ON	Run at internally set speed 7 as set by Pn322.			

ΝΟΤΕ

- The value of t is not affected by the use of the soft boot feature. Reads of /PCL and/NCL can result in a maximum delay of 2ms.
- The switch of the speed control (contact command) → position control (pulse column command) switches to position control after the motor deceleration has stopped during the deceleration time set by Pn307.

When Pn005.1=7, 8 and 9

Switch control mode using /P-CON.

Туре	Signal Name	Pin Number	Setting	Pn005.1=7	Pn005.1=8	Pn005.1=9
		ON	Speed control	Torque control	Speed control	
Input	/P-CON	CN1-15	OFF	Position control	Position control	Torque control

When Pn005.1=A and B

Switch control modes using /P-CON.

Туре	Signal Name	Pin Number	Setting	Pn005.1=A	Pn005.1=B
Input	/P-CON	CN1-15	ON	Speed control with zero clamp function	Position control with reference pulse prohibition
			OFF	speed control	Position control

5.15 Torque Limit

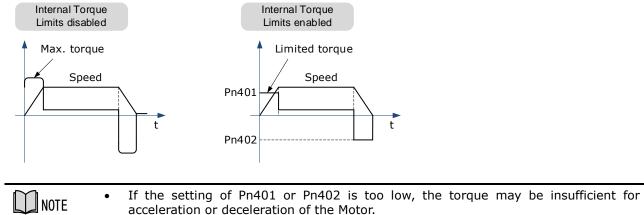
The servo drive provides the following three methods for limiting output torque to protect the machine.

ue limiting through the parameters.
torque is limited with an input signal from the host station.
ue limiting by Analogue reference
t

If you set a value that exceeds the maximum torque of the Motor, the torque will be NOTE limited to the maximum torque of the Motor.

5.15.1 Internal Torque Limits

•


This function limits the maximum output torque through parameters Pn401 and Pn402.

Parameter	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 350	%	300	Immediately
Pn402	Reverse Internal Torque Limit	0 to 350	%	300	Immediately

NOTE

The setting unit is the percentage relative to the motor's rated torque.

Figure below shows a comparison of waveform curves with internal torque and without torque limit:

5.15.2 External Torque Limits

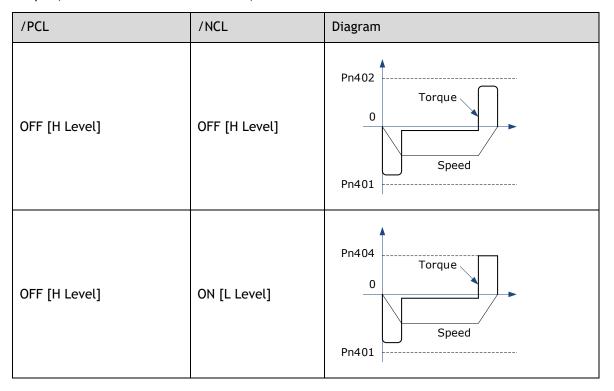
This function limits the torque through the input signal of the upper controller when the torque to be limited at specific times during machine operation. It can be used to push to stop the action or to hold operations for robot workpieces.

Input Signal

The input signals to enable the external torque limits are listed in table below.

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Input			ON	Turn ON the forward external torque limit. [Limit value: Pn403]
Input /P-CL	CN1-41	OFF	Turn OFF the forward external torque limit. [Limit value: Pn401]	
Input	(1)(5)	CN1-42	ON	Turn ON the reverse external torque limit. [Limit value: Pn404]
Input	/NCL	UN1-42	OFF	Turn OFF the reverse external torque limit. [Limit value: Pn402]

Related Parameters


The related parameters of external torque limit are as follows.

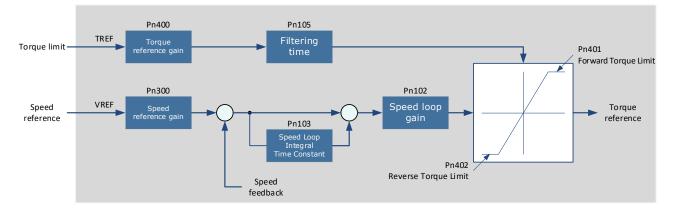
Parameter	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 400	%	350	Immediately
Pn402	Reverse Internal Torque Limit	0 to 400	%	350	Immediately
Pn403	Forward External Torque Limit	0 to 400	%	100	Immediately
Pn404	Reverse External Torque Limit	0 to 400	%	100	Immediately

\sim	•	The setting unit is the percentage relative to the motor's rated torque.
NOTE NOTE	•	If the setting values of Pn401, Pn402, Pn403 and Pn404 are too low, the torque may be insufficient for motor acceleration/deceleration.

Changes in the Output Torque for External Torque Limits

In the following figure, when setting Pn001.0=0 (under the forward reference, the incremental encoder is used in the positive counting direction), it indicates to set the internal torque limit as 300% of output torque (Pn401 and Pn402 are both 300%).

/PCL	/NCL	Diagram
ON [L Level]	OFF [H Level]	Pn402 Torque 0 Pn403 Speed
ON [L Level]	ON [L Level]	Pn404 0 Pn403 Pn403


5.15.3 Torque Limiting Using an Analogue Reference

This function uses TREF (CN1-26, -27) as Analogue reference input terminal so as to limit the torque arbitrarily.

This limit method can only be used in speed control or position control, but be invalid in torque control.

Parameter	Setting	Meaning	When Enabled
Pn001.2	1	Use the TREF terminal as the input terminal of external torque limit.	After restart

Figure below is the block diagram under speed control.

[Note] There is no issue with input voltage polarity of the Analogue voltage reference for torque limiting. The absolute values of both + and - voltages are input, and a torque limit value corresponding to that absolute value is applied in the forward or reverse direction.

Input Signal

The input signals when the torque limiting using an Analogue reference is made are as follows.

Туре	Signal Name	Connector Pin Number	Meaning
lagut	TREF+ CN1-26		Input signal of targue reference
Input	TREF-	CN1-27	Input signal of torque reference

Related Parameters

The parameters related to the torque limiting using an Analogue reference are as follows.

Number	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 400	%	350	Immediately
Pn402	Reverse Internal Torque Limit	0 to 400	%	300	Immediately
Pn400	Analogue Torque Reference Gain	10 to 100	0.1V/100%	33	Immediately
Pn105	Torque Reference Filter Time Constant	0 to 2500	0.01ms	50	Immediately

5.15.4 Torque Limit Confirmation Signals

Output signal indicating the status of motor output torque limit is shown below.

Туре	Signal Name	Connector Pin Number	Output State	Meaning
Input	/CLT	T Allocated by Pn511	ON	Motor output torque is being limited.
			OFF	Output torque is not being limited.

For ways to allocate output signals, see "0 Output Signal Allocation".

5.16 Homing

5.16.1 Function Overview

The Storing Origin function is available after homing.

User can choose whether to home directly after power-up.

User may choose whether to continue homing after a limit or to enter a limit state.

Multiple homing modes are supported.

Storing Origin:

Clear origin data when Pn689.2 = 0.

When Pn689.2 = 1, the Storing Origin is performed after homing is completed, which stores the current single-turn position and the multi-turn position information that can be viewed via Un035 and Un036 respectively. (The origin is stored in parameters Pn694 and Pn695, and will not be displayed). When powering up again, there is no need to perform the homing operation again. The current position of the motor (absolute position with respect to the origin position) can be updated by calculating from the current multi-turn position and single-turn position of the motor as well as the stored position information, and homing done signal is then output. The current position can be viewed via Un009.

Warning A.D9 occurs if the Storing Origin function is switched on and succeeded or the origin stored is lost due to no homing operation.

Homing parameters:

User par	rameters	Meaning
Pn689	b.000 A	0: Switch off the Homing function 1: Enable the Homing function, which can be triggered by the rising edge of the SHOM signal, or be automatically homed after powering up.
	bB	0: The first time Servo-on takes effect, no automatic homing is performed and a SHOM signal is required to trigger the homing operation.1: The first time Servo-on takes effect, the automatic homing is performed without the need for a SHOM signal trigger.
	b.=C= 	 0: No origin is stored after homing, and the data originally stored in Pn694 and Pn695 is reset. 1: Origin is stored after homing. When the encoder has a multi-turn position (Pn002.2 = 0), the current position of the motor is automatically updated each time the drive is re-powered and the homing done signal is output. If a multi-turn information error alarm such as encoder A47 occurs, the data stored in Pn694 and Pn695 is cleared and the homing done signal is not output.
	b.D	 0: In the process of searching for the trigger point, return to the limit and continue to make homing 1: Homing modes 1~6, search for trigger point and stop when it meets limit, and then enter limit state

- Applicable control mode: position control
- Homing operation can only be enabled when /COIN is ON.
- Position control function is invalid during homing process.
- After changing these parameters, turn the power supply ON again to enable the new settings.
- The input connector pin numbers can be assigned to signals SHOM and ORG by means of user parameters.
- After servo is turned ON, it is impossible to start homing under overtravel state (when P-OT/N-OT is enabled).

5.16.2 Related Parameters

NOTE

Parameter	Description							
	Speed of finding reference point (hitting the origin signal ORG)							
Pn685	Range	Unit	Default	Re-powered or not				
	0~3000	rpm	1500	Not required				
	Speed of finding reference point (leaving the origin signal ORG)							
Pn686	Range	Unit	Default	Re-powered or not				
	0~200	rpm	30	Not required				

Parameter	Description							
	Number of homing offset pulses							
	When homing mode is setting of the offset p		•	eceleration), the positive				
Pn690	When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.							
	Range	Unit	Default	Re-powered or not				
	-9999~9999	10000 Pulse	0	Not required				
	Number of homing off	Number of homing offset pulses						
	When homing mode is 7 and 9 (in the case of positive limit deceleration), the positive setting of the offset pulse number is invalid.							
Pn691	When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.							
	Range	Unit	Default	Re-powered or not				
	-9999~9999	1Pulse	0	Not required				
Pn692	The homing mode is valid after re-powering on.							
Pn693	Homing acceleration, time taken to accelerate to 1,000rpm, in ms							

NOTE NOTE	• When homing mode is 7 and 9 (in the case of positive limit deceleration), the positive setting of the offset pulse number is invalid.
	• When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.

5.16.3 Selection of Homing Modes

Select homing mode using Pn692. The Homing mode is valid after re-powering on.

Parameter	Setting	Meaning	When Enabled
	0	Use current position as the origin	
	1	Forward homing, and use deceleration point and origin as the ORG switch	
	2	Reverse homing, and use deceleration point and origin as the ORG switch	
Pn692 3 4	3	Forward homing, and use the deceleration point as the ORG switch, and the origin as the motor's Z signal	After restart
	4	Reverse homing, and use the deceleration point as the ORG switch, and the origin ass the motor's Z signal	
1 7		Forward homing, and use the deceleration point and origin as the motor's Z signal	
	6	Reverse homing, and use deceleration point and origin as the motor's Z signal	

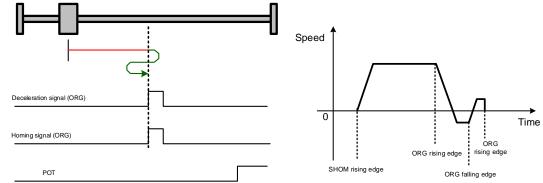
Parameter	Setting	Meaning	When Enabled
	7	Forward homing, use the deceleration point and origin as the overtravel switches	
	8 Reverse homing, and use deceleration point and origin as the overtravel switches		
	9	9 Forward homing, and use the deceleration point as an overtravel switch, and the origin as the motor's Z signal	
	10 Reverse homing, and use the deceleration point as an overtravel switch, and the origin as the motor's Z signal		
	11	Power-up and run to home; only applicable when Pn005.1 = 1 and for position control (pulse train command)	

5.16.4 Allocating Homing Signals

SHOM and ORG signals need to be allocated before homing operation, which can be set via Pn509 or Pn510.

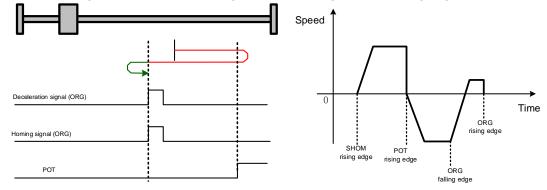
Туре	Signal Name	Connector Pin Number	Signal State	Meaning
	Allocated by		ON=↑ (rising edge)	Start homing operation.
Input	nput SHOM Pn509 or Pn510	OFF= Non-rising edge signal	Homing operation is not executed.	
Input	Allocated by		ON=High level	Reference position of homing point is valid
Input	Input ORG Pn509 or Pn510	OFF=Low level	Reference position of homing point is invalid	

Set the output signal (/HOME) after homing via Pn511.

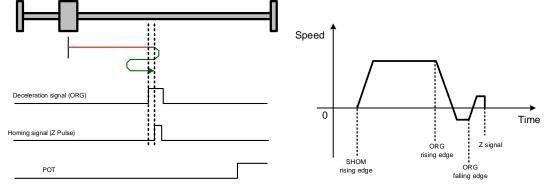

Cotting	Connector Pin Number		Mooning	
Setting	+ Terminal	- Terminal	Meaning	
Pn511.0=8	CN1-11	CN1-12	The signal is output from output terminal CN1-11,12.	
Pn511.1=8	CN1-5	CN1-6	The signal is output from output terminal CN1-5,6.	
Pn511.2=8	CN1-9 CN1-10		The signal is output from output terminal CN1-9,10.	

NOTE

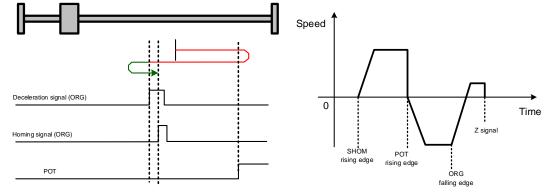
• HOME signal is only enabled at low level (ON).


5.16.5 Homing Timing Sequence

Homing modes 1 and 2, using deceleration point and origin as ORG switch

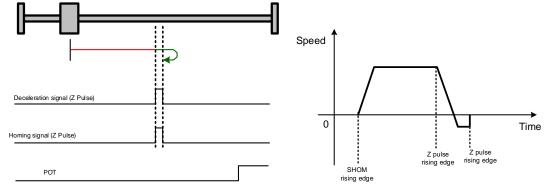

Hit the deceleration signal (ORG rising edge) before encountering the limit signal.

Hit the limit signal before encountering deceleration signal (ORG rising edge).

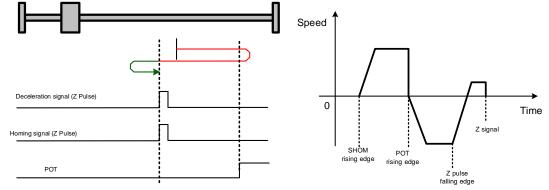


Homing modes 3 and 4, using deceleration point as ORG switch, and origin as Motor's Z signal

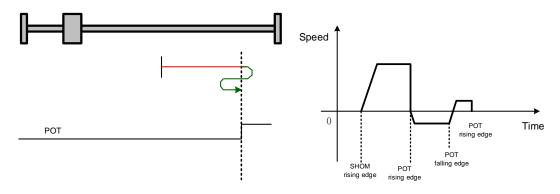
Hit the deceleration signal (ORG rising edge) before encountering the limit signal.



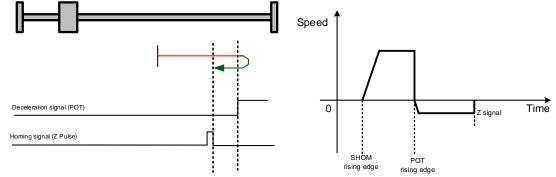
Hit the limit signal before encountering deceleration signal (ORG rising edge).



Homing modes 5 and 6, using origin as motor's Z signal


Hit the deceleration signal (Z signal rising edge) before encountering the limit signal.

Hit the limit signal before encountering deceleration signal (Z signal rising edge).

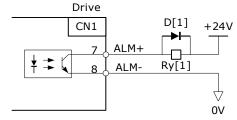


Homing modes 7 and 8, using deceleration point and origin as overtravel switch

Homing modes 9 and 0, using deceleration point as overtravel switch, and origin as motor's Z signal

5.17 Other Output Signals

5.17.1 Alarm Output Signal (/ALM)


The servo drive outputs an alarm output signal (/ALM) when it detects an alarm.

Connection of Alarm Output Signal

The external circuit formed by /ALM must satisfy following conditions: the main circuit power supply of the servo drive is turned OFF through the signal output.

The following diagram shows the right way to connect the Alarm Output Signal:

Ry[1]: Relay D[1]: Diode Photo-couple Output Max. operating voltage: DC 30V Max. operating current: DC 50mA

An external +24V I/O power supply is required.

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
		CN1-7, 8	ON	Servo drive is operating normally.
Output	/ALM	CNT-7, 8	OFF	Servo drive is in alarm status

Ways to Reset Alarm

When "servo alarm (ALM)" happens, always remove alarm reasons first, and then turn the input signal "/ALM-RST" to ON position to reset alarm status.

Туре	Signal Name	Connector Pin Number	Meaning
Input	ALM-RST	CN1-39	Alarm resets

Be sure to check the cause of the alarm before alarm reset. For the alarm troubleshooting, refer to "10.2 Troubleshooting".

Some alarms may not be reset by the ALM-RST signal. In this case, reset after cutting off the control power.
User may also try to reset the current alarm by pressing the [◄] key on the operation panel.

5.17.2 Rotation Detection Output Signal (/TGON)

/TGON is output when the motor is currently operating above the setting set in parameter Pn503.

Signal Specification

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Output	Output /TGON CN1-5, 6	CN1 5 4	ON	Motor is running at a speed above the value set in Pn503.
		OFF	Motor is running at a speed lower than the value set in Pn503.	

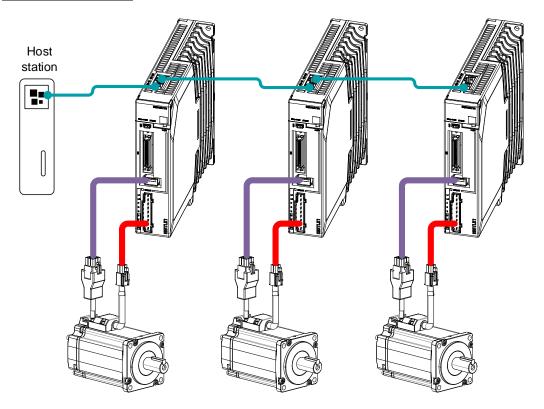
Related Parameters

Number	Name	Range	Unit	Default	When Enabled
Pn503	Detection Speed	0 to 3000	rpm	20	Immediately

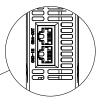
5.17.3 Servo Ready (/S-RDY) Output Signal

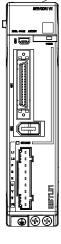
The servo drive outputs the servo READY signal (/S-RDY) after receiving servo ON (S-ON) signal. The signal is output under the following conditions:

- The main circuit power supply is ON.
- No alarm occurs.


The specification of signal is as follows:

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
		ON	Status of the servo ON (S-ON) signal can be received.	
Output	/S-RDY	CN1-9, 10	OFF	Status of the servo ON (S-ON) signal cannot be received.


Chapter 6 CANopen Communication


6.1 Wiring and Connection

Connection diagram

Terminal arrangement

 $\underline{\text{CN3-IN}}$: Connected by the OUT of the previous drive or controller.

<u>CN4-OUT</u>: Connect to the next Drive's IN or not connect.

Signal Definition

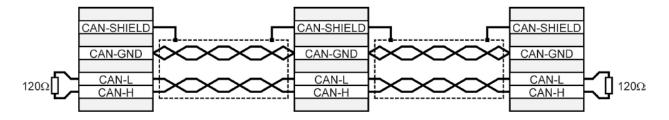
The external communication connection terminals (CN3-IN and CN4-OUT) are of RJ45 connectors. The interface line as the master or controller is connected from CN3-IN, and CN4-OUT is connected to the CN3-IN terminal of next drive (slave).

Connector	Pin	Definition	Description
	1	-	Reserved
	2	-	Kesel veu
	3	RS485+	RS-485 communication terminal +
	4	GNDW	
	5	GNDW	Signal GND
	6	RS485-	RS-485 communication terminal -
	7	CANH	CAN communication terminal
	8	CANL	CAN communication terminat
	Housing	FG	Shielded wire is connected to the housing

	INUIE

The signal definitions of CN3-IN and CN4-OUT are the same.

Wiring Instructions


When wiring the CANopen communication, following precarious shall be taken.

• Do not short connect pin 1 and pin 2.

•

- Use UTPs (at least 2 pairs) with shielding layer. One pair of UTPs is connected to CANL and CANH; the other is connected to ISO_GND.
- The shielding layer is generally grounded reliably at a single point.
- To prevent signal reflection, it is recommended to connect two 120Ω (1%, 1/4W) terminal matched resistors at both ends of the bus.
- It is recommended that the CAN bus networking node is ≤ 16 .

The wiring diagram is shown below.

6.2 CANopen Overview

6.2.1 CAN Identifier List

Object	COB-ID bit10tobit7	COB-ID (Hexadecimal)	Index in OD
NMT	0000	000 _h	-
SYNC	0001	080 _h	1005 _h , 1006 _h , 1007 _h
TIME STAMP	0010	100 _h	1012 _h , 1013 _h
EMCY	0001	081 _h to 0FF _h	1024 _h , 1015 _h
PDO1 (transmit)	0011	181 _h to 1FF _h	1800 _h
PDO1 (receive)	0100	201 _h to 27F _h	1400 _h
PDO2 (transmit)	0101	281 _h to 2FF _h	1801 _h
PDO2 (receive)	0110	301 _h to 37F _h	1401 _h
PDO3 (transmit)	0111	381 _h to 3FF _h	1802 _h
PDO3 (receive)	1000	401 _h to 47F _h	1402 _h
PDO4 (transmit)	1001	481 _h to 4FF _h	1803 _h
PDO4 (receive)	1010	501 _h to 57F _h	1403 _h
SDO (transmit)	1011	581 _h to 5FF _h	1200 _h
SDO (receive)	1100	601 _h to 67F _h	1200 _h
Heartbeat	1110	701 _h to 77F _h	1016 _h , 1017 _h

6.2.2 Service Data Objects (SDO)

SDO is used to visit the object dictionary of a device. Visitor is called client. The CANopen device whose object dictionary is visited and required to supply the asked service is called server. CANopen messages from a client and servo all contain 8 bits (not all of them are meaningful). A request from a client must be confirmed by a server.

There are 2 methods of transferring SDO:

- Expedited transfer: contains 4 bytes at maximum
- Segmented transfer: contains more than 4 bytes

Basic structure of SDO:

Byte0	Byte1 to Byte2	Byte3	Byte4 to Byte7
SDO	Object index	Object sub-index	Data

SDO read/write structure:

SDO message format for parameter read/write operation:

	Read commands	Write command
	Low-Byte of main index (hex)	
	High-Byte of main inde	x (hex)
UINT8 / INT8	Subindex (hex)	
Command	40 _h IX0 IX1 SU	2Fh IX0 IX1 SU DO
Answer	4F _h IX0 IX1 SU D0	60 _h IX0 IX1 SU
UINT16 / INT16	Token for 8 Bit	Token for 16 Bit
Command	40 _h IX0 IX1 SU	2Bh IX0 IX1 SU DO D1
Answer	4B _h IX0 IX1 SU D0 D1	60 _h IX0 IX1 SU
UINT32 / INT32	Token for 16 Bit	Token for 32 Bit
Command	40 _h IX0 IX1 SU	23 _h IX0 IX1 SU DO D1
Answer	43_h IX0 IX1 SU D0 D1 D2	D3 60 _h IX0 IX1 SU
	Token for 32 Bit	
For example:		
	ng of Obj. 6061_00 _h urning data: 01 _h	Writing of Obj. 1401_02 _h Data: EF _h
Command: 40_h 61_h	60 _h 00 _h 2	$2F_h 01_h 14_h 02_h EF_h$
Answer: $4F_h 61_h$	60 _h 00 _h 01 _h	50 _h 01 _h 14 _h 02 _h
	ng of Obj. 6041_00 _h rning data: 1234 _h	Writing of Obj. 6040_00 _h Data: 03E8 _h
Command: 40 _h 41 _h	60 _h 00 _h 2	$2B_{h} 40_{h} 60_{h} 00_{h} E8_{h} 03_{h}$
Answer: 4B _h 41 _h	$60_{\rm h} \ 00_{\rm h} \ 34_{\rm h} \ 12_{\rm h}$	50 _h 40 _h 60 _h 00 _h
	ng of Obj. 6093_01 _h ing data: 12345678 _h	Writing of Obj. 6093_01 _h Data: 12345678 _h

 $2{\bf 3}_h \ {\bf 93}_h \ {\bf 60}_h \ {\bf 01}_h \ {\bf 78}_h \ {\bf 56}_h \ {\bf 34}_h \ {\bf 12}_h$ 60_h 93_h 60_h 01_h

Command:		IX0	IX1	SU					
Answer:	80 _h	IX0	IX1	SU	F0	F1	F2	F3	
	Ł	_ Erro	or toke	en	ł	ł	ł	ł	Error code (4 Byte)

 $43_h \ 93_h \ 60_h \ 01_h \ 78_h \ 56_h \ 34_h \ 12_h$

ds

D2 D3

Format of SDO read/write error message:	

Command: $40_h \ 93_h \ 60_h \ 01_h$

Answer:

Answer:	80 _h	IX0	IX1	SU	F0	F1	F2	F3	
	Ł	_ Erro	or toke	n	Ł	ł	ł	ł	Error code (4 By

Error code is defined as follows:

Error code F3 F2 F1 F0	Description
$05\;03\;00\;00_{h}$	Toggle bit not alternated
05 04 00 01 _h	Client / server command specifier not valid or unknown
$06\;01\;00\;00_{h}$	Unsupported access to an object
$06\ 01\ 00\ 01_h$	Attempt to read a write only object
06 01 00 02 _h	Attempt to write a read only object
06 02 00 00 _h	Object does not exist in the object dictionary
06 04 00 41 _h	Object cannot be mapped to the PDO
06 04 00 42 _h	The number and length of the objects to be mapped would exceed PDO length
06 04 00 47 _h	General internal incompatibility in the device
$06 \ 07 \ 00 \ 10_h$	Data type does not match, length of service parameter does not match
06 07 00 12 _h	Data type does not match, length of service parameter too high
$06\ 07\ 00\ 13_h$	Data type does not match, length of service parameter too low
$06\ 09\ 00\ 11_h$	Sub-index does not exist
06 04 00 43 _h	General parameter incompatibility
06 06 00 00 _h	Access failed due to an hardware error *1)
$06 \ 09 \ 00 \ 30_h$	Value range of parameter exceeded
$06\ 09\ 00\ 31_h$	Value of parameter written too high
$06 \ 09 \ 00 \ 32_h$	Value of parameter written too low
06 09 00 36 _h	Maximum value is less than minimum value
08 00 00 20 _h	Data cannot be transferred or stored to the application *1)
$08\ 00\ 00\ 21_h$	Data cannot be transferred or stored to the application because of local control
08 00 00 22 _h	Data cannot be transferred or stored to the application because of the present device state $^{\ast 3)}$
~~ ~~ ~~ ~~	No Object Dictionary is present *2)

6.2.3 Process Data Objects (PDO)

PDO is applied to transferring real time data which will be conveyed from a producer to one or multiple clients. Data transferring will be limited to 1 to 8 bytes. There is no hand-shake restriction in PDO communication, which means data has been redefined, so clients could process the received data for vary short time. PDO content will be only defined by its CAN ID, assuming producers and clients know PDO content from its CAN ID.

2 objects in object dictionary are used for each PDO.

- PDO communication parameter: It contains COB-ID, transferring type, restriction time and cycle of timer used by PDO.
- PDO mapping parameter: It contains a list of objects in the object dictionary. These objects are mapped into PDO, includes their data length in bits. Producers and clients must know this mapping to explain the content of PDO.

The content of PDO's message is predefined or configured when the network initializes. Mapping application object into PDO is described in object dictionary. If a device (producer and client) support dynamic mapping, SDO could be used to configure PDO's mapping parameter. Our servo drive supports dynamic PDO mapping. There are 2 rules for PDO mapping to follow:

- Each PDO could be mapped into 4 objects.
- The length of each PDO will be no more than 64 bits.

PDO mapping process

1. Set the sub-index of PDO coordinated mapping parameter (e.g. 1600_{h} or $1A00_{h}$) as o.

- 2. Revise the sub-index from 1 to 4 of PDO coordinated mapping parameter (e.g. 1600_{h} or $1A00_{h}$).
- 3. Set the sub-index 0 of PDO coordinated mapping parameter (e.g. 1600_{h} or $1A00_{h}$) as legal Number (number of PDO's mapping objects)
- 4. PDO mapping completed.

Ways to transmit PDO

• Synchronous (synchronization by receiving SYNC object)

Cycle: Transmission triggered after every 1 to 240 SYNC messages.

Asynchronous

Transmission triggered by special object event regulated in sub-object protocol.

Definition of transmission type of PDO

Transmission Type	Description	PDO Type
0	Reserved	_
1 to 240	Synchronous: It represents the number of SYNC objects between 2 PDOs.	TPDO/RPDO
240 to 253	Reserved	
254	Asynchronous: If the content of PDO has changed, PDO transmission will be triggered.	TPDO
255	Asynchronous: The content of PDO will be periodically updated and transmitted.	TPDO/RPDO

One PDO could set a frozen time which is the shortest interval time between 2 continuous PDO. It could prevent the bus from being occupied by amount of data with high priority. Frozen time is defined by 16 bit unsigned integer number and its unit is 100us

One PDO could set a timing period. When the regulated time is violated, a PDO transmit could be triggered without a trigger bit. Object timing period is defined as 16 bit unsigned integer and its unit is 1ms.

PDO mapping example

Map the 3 objects to PDO1 (transmit). PDO1 (transmit) is required to be asynchronous periodic type with period time as much as 10ms and frozen time as much as 2ms.

Object	Index – Sub-index	Description
statusword	6041 _h - 00 _h	Status word
modes_of_operation_display	6061 _h - 00 _h	Practical operational mode
Position_Actual_Value	6064 _h - 00 _h	Practical position

Step 1 Clear number_of_mapped_objects

number_of_mapped_objects(1A00 h: 00 h)= 0

Step 2 Set the parameter for mapping objects

Index =6041 _h	Subin. = 00h Length = $10_h \Rightarrow 1st_mapped_object(1A00_h: 01_h) = 60410010_h$
Index =6061 _h	Subin. = 00h Length = $08_h \Rightarrow 2st_mapped_object(1A00_h: 02_h) = 60610008_h$
Index =60FD _h	Subin. = 00h Length = $20_h \Rightarrow 3st_mapped_object(1A00_h: 03_h) = 60FD0020_h$

Step 3 Set number_of_mapped_objects

number_of_mapped_objects(1A00 h: 00 h)= 3

Step 4 Set PDO communication parameter

PDO1 (transmit) is asynchronous per	iodical type \Rightarrow transmit_type (1800 h: 02 h)= FF h
Frozen time 2ms(20×100us)	\Rightarrow inhibit_time (1800 h: 03 h)= 14 h
Period time 10ms(10×1ms)	\Rightarrow event_time (1800 _h : 05 _h)= 0A _h

Step 5 PDO mapping completed.

PDO Parameters

Drive contains 4 transmit PDOs and 4 receive PDOs. The detailed communication parameter and mapping parameter of the first transmit/receive PDO is as below and those of the rest 3 transmit/receive PDO are the same as the first PDO.

Index	1800 _h
Name	transmit_pdo_parameter_tpdo1
Object Code	RECORD
No. of Elements	4

Sub-Index	01 _h			
Description	cob_id_used_by_pdo_tpdo1			
Data Type	UINT32			
Access	RW			
PDO Mapping	NO			
Units				
Value Range	181 h1FF h, Bit 31 may be set			
Default Value	181 _h			

02 _h
transmission_type_tpdo1
UINT8
RW
NO
1240,254,255
255

Sub-Index	03 _h
Description	inhibit_time_tpdo1
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	100µs
Value Range	
Default Value	100

Sub-Index	05 h
Description	event_time_tpdo1
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	1ms
Value Range	
Default Value	10

Index	1A00 _h		
Name	transmit_pdo_mapping_tpdo1		
Object Code	RECORD		
No. of Elements	2		

Sub-Index	00 h			
Description	number_of_mapped_objects_tpdo1			
Data Type	UINT8			
Access	RW			
PDO Mapping	NO			
Units				
Value Range	04			
Default Value	2			

Sub-Index	01 _h
Description	first_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	见表

Sub-Index	02 _h
Description	second_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	见表

Sub-Index	03 h
Description	third_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	

Sub-Index	04 _h
Description	fourth_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	见表

<u>T-PDO1</u>

Index	Comment	Туре	Acc.	Default Value
1800 _h _00 _h	number of entries	UINT8	RO	04 _h
1800 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000181 _h
1800 _h _02 _h	transmission type	UINT8	RW	FF h
1800 _h _03 _h	inhibit time (100 µs)	UINT16	RW	64 _h
1800 _h _05 _h	event time (1ms)	UINT16	RW	0A _h
1A00 _h _00 _h	number of mapped objects	UINT8	RW	02 _h
1A00 _h _01 _h	first mapped object	UINT32	RW	60410010 _h
1A00 _h _02 _h	second mapped object	UINT32	RW	60640020 _h
1A00 _h _03 _h	third mapped object	UINT32	RW	00 h
1A00 _h _04 _h	fourth mapped object	UINT32	RW	00 h

<u>T-PDO2</u>

Index	Comment	Туре	Acc.	Default Value
1801 _h _00 _h	number of entries	UINT8	RO	04 _h
1801 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000281 _h
1801 _h _02 _h	transmission type	UINT8	RW	FF h
1801 _h _03 _h	inhibit time (100 µs)	UINT16	RW	64 _h

Index	Comment	Туре	Acc.	Default Value
1801 _h _05 _h	event time (1ms)	UINT16	RW	0A _h
1A01 _h _00 _h	number of mapped objects	UINT8	RW	02 _h
1A01 _h _01 _h	first mapped object	UINT32	RW	60640020 _h
1A01 _h _02 _h	second mapped object	UINT32	RW	60610010 _h
1A01 _h _03 _h	third mapped object	UINT32	RW	00 h
1A01 _h _04 _h	fourth mapped object	UINT32	RW	00 h

<u>T-PDO3</u>

Index	Comment	Туре	Acc.	Default Value
1802 _h _00 _h	number of entries	UINT8	RO	04 _h
1802 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000381 _h
1802 _h _02 _h	transmission type	UINT8	RW	FF h
1802 _h _03 _h	inhibit time (100 µs)	UINT16	RW	64 _h
1802 _h _05 _h	event time (1ms)	UINT16	RW	0A _h
1A02 _h _00 _h	number of mapped objects	UINT8	RW	00 h
1A02 _h _01 _h	first mapped object	UINT32	RW	0 _h
1A02 _h _02 _h	second mapped object	UINT32	RW	0 _h
1A02 _h _03 _h	third mapped object	UINT32	RW	00 h
1A02 _h _04 _h	fourth mapped object	UINT32	RW	00 h

<u>T-PDO4</u>

Index	Comment	Туре	Acc.	Default Value
1803 _h _00 _h	number of entries	UINT8	RO	04 _h
1803 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000481 _h
1803 _h _02 _h	transmission type	UINT8	RW	FF h
1803 _h _03 _h	inhibit time (100 µs)	UINT16	RW	64 _h
1803 _h _05 _h	event time (1ms)	UINT16	RW	0A _h
1A03 _h _00 _h	number of mapped objects	UINT8	RW	00 h
1A03 _h _01 _h	first mapped object	UINT32	RW	0 h
1A03 _h _02 _h	second mapped object	UINT32	RW	0 h
1A03 _h _03 _h	third mapped object	UINT32	RW	00 h
1A03 _h _04 _h	fourth mapped object	UINT32	RW	00 h

If **transmit type is 254** (if PDO content has changed, such PDO is triggered to send), use of the following object can shield parts of PDO changers. Only when the un-shield bit has changed, PDO occurs. If wants shielding any bit, the corresponding bit of object write to 0.

tpdo_1_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2000 _h _00 _h	number of entries	UINT8	RO	02 _h
2000 _h _01 _h	tpdo_1_transmit_mask_low	UINT32	RW	FFFFFFF h
2000 _h _02 _h	tpdo_1_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_2_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2001 _h _00 _h	number of entries	UINT8	RO	02 _h
2001 _h _01 _h	tpdo_2_transmit_mask_low	UINT32	RW	FFFFFFF h
2001 _h _02 _h	tpdo_2_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_3_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2002 _h _00 _h	number of entries	UINT8	RO	02 _h
2002 _h _01 _h	tpdo_1_transmit_mask_low	UINT32	RW	FFFFFFF h
2002 _h _02 _h	tpdo_1_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_4_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2003 _h _00 _h	number of entries	UINT8	RO	02 _h
2003 _h _01 _h	tpdo_2_transmit_mask_low	UINT32	RW	FFFFFFF h
2003 _h _02 _h	tpdo_2_transmit_mask_high	UINT32	RW	FFFFFFF h

<u>R-PDO1</u>

Index	Comment	Туре	Acc.	Default Value
1400 _h _00 _h	number of entries	UINT8	RO	02 _h
1400 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000201 _h
1400 _h _02 _h	transmission type	UINT8	RW	FF h
1600 _h _00 _h	number of mapped objects	UINT8	RW	02 _h
1600 _h _01 _h	first mapped object	UINT32	RW	60400010 _h
1600 _h _02 _h	second mapped object	UINT32	RW	60FF0020 _h
1600 _h _03 _h	third mapped object	UINT32	RW	00 h
1600 _h _04 _h	fourth mapped object	UINT32	RW	00 h

<u>R-PDO2</u>

Index	Comment	Туре	Acc.	Default Value
1401 _h _00 _h	number of entries	UINT8	RO	02 _h
1401 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000301 _h
1401 _h _02 _h	transmission type	UINT8	RW	FF h
1601 _h _00 _h	number of mapped objects	UINT8	RW	02 _h
1601 _h _01 _h	first mapped object	UINT32	RW	60FF0020 _h
1601 _h _02 _h	second mapped object	UINT32	RW	60600010 _h
1601 _h _03 _h	third mapped object	UINT32	RW	00 h
1601 _h _04 _h	fourth mapped object	UINT32	RW	00 h

<u>R-PDO3</u>

Index	Comment	Туре	Acc.	Default Value
1402 _h _00 _h	number of entries	UINT8	RO	02 _h
1402 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000401 _h
1402 _h _02 _h	transmission type	UINT8	RW	FF h
1602 _h _00 _h	number of mapped objects	UINT8	RW	00 h
1602 _h _01 _h	first mapped object	UINT32	RW	0 _h
1602 _h _02 _h	second mapped object	UINT32	RW	0 _h
1602 _h _03 _h	third mapped object	UINT32	RW	00 h
1602 _h _04 _h	fourth mapped object	UINT32	RW	00 _h

<u>R-PDO4</u>

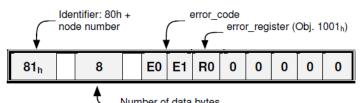
Index	Comment	Туре	Acc.	Default Value
1403 _h _00 _h	number of entries	UINT8	RO	02 _h
1403 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000501 _h
1403 _h _02 _h	transmission type	UINT8	RW	FF h
1603 _h _00 _h	number of mapped objects	UINT8	RW	00 _h
1603 _h _01 _h	first mapped object	UINT32	RW	0 _h
1603 _h _02 _h	second mapped object	UINT32	RW	0 _h
1603 _h _03 _h	third mapped object	UINT32	RW	00 _h
1603 _h _04 _h	fourth mapped object	UINT32	RW	00 h

6.2.4 SYNC Message

Synchronization object is used for controlling data synchronize transmit. For example, starting synchronously several axes. The transmission of synchronous message is based on Producer-Customer model. All the nodes of synchronous PDO can receive (at the same time) the message as customer and synchronize other node.

The general mode is that the SYNC master node sends the SYNC object regularly, and the SYNC slave node executes the task synchronously upon receiving it.

CANopen suggests a COB-ID with highest priority to ensure that synchronized signal could be transmitted properly. Without transferring data, SYNC message could be as short as possible.


The COB-ID of the SYNC message is fixed at 080_h, and the COB-ID can be read from 1005_h in the object dictionary.

Index	1005 _h
Name	cob_id_sync
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	80000080 _h , 00000080 _h
Default Value	00000080 _h

6.2.5 Emergency Message

When an alarm occurs to drive, CANopen will initiate an Emergency message to inform the current drive type and error code to clients. Error code displayed on panel can be read on low byte of 603Fh object.

Structure of Emergency Message:

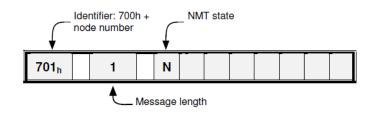
 Number	of	data	bytes

Error Code (Hex)	Description
2310	Over current
3100	Instantaneous power failure
3110	Over voltage
3120	Under voltage
5080	RAM exception
5210	AD sampling error
5420	Regenerative resistor error
5421	Regenerative resistor exception
5581	Parameter checksum exception
5582	Electric gear error
5583	Motor type or drive type error
6100	Illegal error code

Error Code (Hex)	Description
6120	PDO mapping error
6300	CAN communication error(Address or communication baud rate error)
7303	serial encoder error
7305	Incremental encoder error
7380	Resolver error
8100	CAN communication exception
8110	CAN bus overflow
8120	PASSIVE CAN bus turn to PASSIVE
8130	Heartbeat error
8140	CAN BUS OFF
8200	Length of CAN messages error
8210	Length of receiving PDO error
8311	Overload alarm
8480	Over speed alarm

Related Parameters

Index	1003 _h
Name	pre_defined_error_field
Object Code	ARRAY
No. of Elements	4
Data Type	UINT32
Sub-Index	01 _h
Description	standard_error_field_0
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	
Sub-Index	02 _h
Description	standard_error_field_1
Access	RO

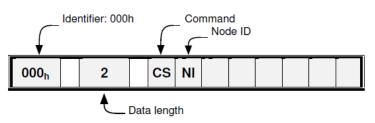

PDO Mapping	NO	
Units		
Value Range		
Default Value		

Sub-Index	03 _h
Description	standard_error_field_2
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	

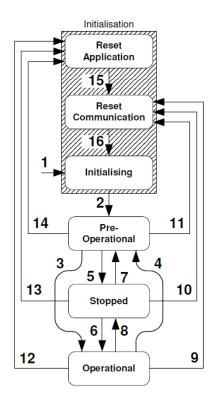
Sub-Index	04 h
Description	standard_error_field_3
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	

6.2.6 HEARTBEAT Message

Structure of Heartbeat Message

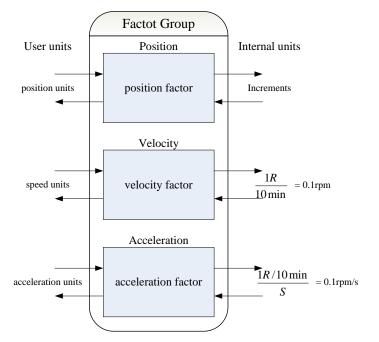

Related Parameters

Index	1017 _в
Name	producer_heartbeat_time
Object Code	VAR
Data Type	UINT16


Access	RW
PDO Mapping	NO
Units	ms
Value Range	0 - 65535
Default Value	1000

6.2.7 Network management (NMT service)

Structure of Message


NMT state transition diagram

CS	Meaning	Transition	Target state
01 _h	Start Remote Node	3, 6	Operational
02 _h	Stop Remote Node	5, 8	Stopped
80 _h	Enter Pre-Operational	4, 7	Pre-Operational
81 _h	Reset Application	12, 13, 14	Reset Application
82 _h	Reset Communication	9, 10, 11	Reset Communication

Name	Meaning	SDO	PDO	NMT
Reset Application	No communication. All CAN objects are set to their reset values (application parameter set).	-	-	-
Reset Communication	No communication. The CAN controller will be re-initialised.		-	-
Initialising	State after Hardware Reset. Reset of the CAN node, sending of the Bootup message	-	-	-
Pre-Operational	Communication via SDOs possible. PDOs inactive (No sending / receiving)	х	-	x
Operational	Communication via SDOs possible. PDOs active (sending / receiving)	x	X	x
Stopped	No communication except heartbeat + NMT	-	-	X

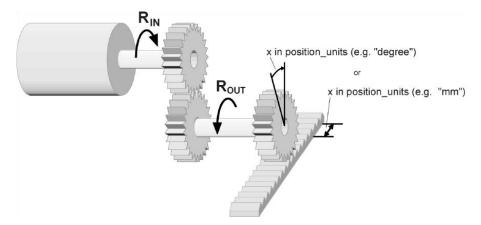
6.3 Unit Conversion

Default user unit of the drive:

Object	Name	Unit	Description
Length	Position Units	Increments	Pulse *
Speed	Speed Units	1R /10min	0.1rpm
Acceleration	Acceleration Units	1R/10min/s	0.1rpm/s
Jerk	Jerk Units	pulse/(s*100µs*100µs)	Value ranged from 1 to 20, the smaller the smoother

* 17-bit encoder outputs 131,072 pulses per revolution
 20-bit encoder outputs 8,388,608 pulses per revolution

6.3.1 Parameters for Unit Conversion


Index	Object	Name	Туре	Attr.
6093 _h	ARRAY	position factor	UINT32	RW
6094 _h	ARRAY	velocity factor	UINT32	RW

Index	Object	Name	Туре	Attr.
6097 _h	ARRAY	acceleration factor	UINT32	RW

6.3.2 Position factor

Position factor module converts all the measuring units of client into internal unit of servo drive (pulse) and at the same time converts the unit (pulse) of all the output from the drive into the measuring unit of clients (position units). Position factors includes numerator and division.

Index	6093 _h
Name	position factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32
Sub-Index	01 _h
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	Initialized to the value of Pn201 when power on
Sub-Index	02 _h
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	Initialized to the value of Pn202 when power on

For calculating the position factors easily, 2 parameters as below are defined:

- gear_ratio: Reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load's revolution is m, then gear_ratio = m/n)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.

position factor is calculated according to:

position fac	$\operatorname{tor} = \frac{1}{\operatorname{division}} = \frac{1}{\operatorname{feed_constant}}$
Encoder Type	encoder_resolution (Unit: Inc)
17-bit encoder	131072
20-bit encoder	1048576
23-bit encoder	8388608

position factor = $\frac{\text{numerator}}{\text{division}} = \frac{\text{gear_ratio} * \text{encoder_resolution}}{\text{feed constant}}$

6.3.3 Velocity factor

Velocity factor module converts all the speed measuring unit at customer side into drive's internal measuring unit as much as 0.1rpm. And at the same time, it converts the drive's output velocity unit (0.1rpm) into user's velocity units. Velocity factor parameters includes a numerator and a division.

Index	6094 _h
Name	velocity factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32
Sub-Index	01 _h
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1
Sub-Index	02 _h
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

For calculating velocity factor easily, 3 parameters are defined as below:

- time_factor_v: drive's internal time unit and user's time unit. (For example: 1min = 1/10 10min)
- gear_ratio: the reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load's revolution is m, then gear_ratio = n/m)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.

velocity factor is calculated according to:

velocity factor =
$$\frac{\text{numerator}}{\text{division}} = \frac{\text{gear_ratio} * \text{time_factor_v}}{\text{feed_constant}}$$

6.3.4 Acceleration factor

Acceleration factor module converts all the acceleration units at the perspective of clients into drive's internal unit (0.1rpm) and at the same time converts the output acceleration units (0.1rpm) from the

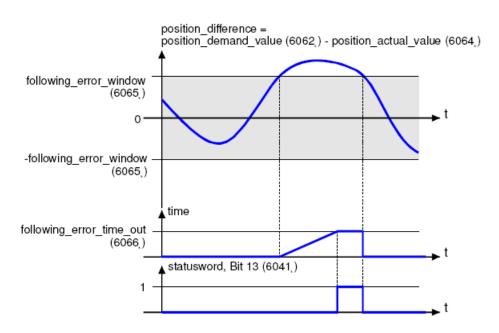
drive into acceleration units at the perspective of clients. Acceleration factor parameters contain	
numerator and division.	

Index	6097 _h
Name	acceleration factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32
Sub-Index	01 _h
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1
Sub-Index	02 _h
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

For calculating velocity factor easily, we could define 3 variables as below:

- time_factor_a: The ratio between drive's internal time square and clients' time square. (For example: 1min2 = 1min*min = 60s*1min = 60/10 10min/s)
- gear_ratio: the reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load's revolution is m, then gear_ratio = n/m)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.

acceleration factor is calculated according to:


acceleration factor = $\frac{numerator}{division} = \frac{gear_ratio * time_factor_a}{feed_constant}$

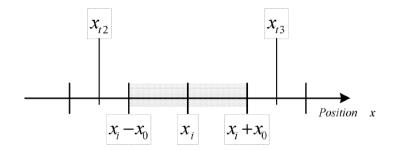
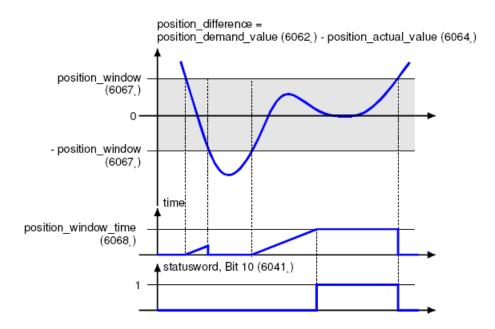
6.4 Position Control Function

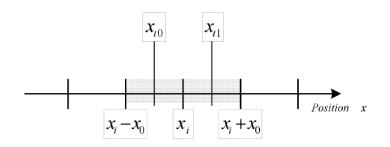
The demanding position (position_demand_value) output from Trajectory unit is the input of drive's position loop. Besides, the actual position(position_actual_value) is measured through the motor's encoder. Position control is influenced by parameter settings. To ensure the stability of the control system, we have to limit

the output of postion loop (control_effect). This output becomes the given speed for speed loop. In the Factor group, all the input and output are transformed into the internal measuring unit of the servo drive.

Following Error

The deviation of the actual position value (position_actual_value) from the desired position value (position_demand_value) is named following error. As shown in figure above, if for a certain period of time this following error is bigger than specified in the following error window (following_error_window) bit 13 (following_error) of the object statusword will be set to 1.


Figure above shows how the window function is defined for the message "following error". The range between xi-x0 and xi+x0 is defined symmetrically around the desired position (position_demand_value) xi. For example the positions x_{t2} and x_{t3} are outside this window (following_error_window). If the drive leaves this window and does not return to the window within the time defined in the object following_error_time_out then bit 13 (following_error) in the statusword will be set to 1.

Position Reached

This function offers the chance to define a position window around the target position (target_position). If the actual position of the drive is within this range for a certain period of time - the position_window_time - bit 10 (target_reached) will be set to 1 in the statusword. As shown in figure below.

The figure below shows the position_windows are symmetrically distributed around the target_position), i.e. the range from xi-x0 to xi + x0. For example, the positionsxt0 and xt1 are in the position windows. If the drive is in the window, a fixed period starts timing. If the fixed period reaches the position_window_ time and the drive position is always in the window during the time, then bit10 (target_reached) in the statusword_will be set to 1. As soon as the drive position leaves the window, bit10 (target_reached) in the statusword will be cleared to zero immediately.

Related Parameters

Index	Object	Name	Туре	Attr.
6062 _h	VAR	position_demand_value	INT32	RO
6063 _h	VAR	position_actual_value*	INT32	RO
6064 _h	VAR	position_actual_value	INT32	RO
6065 _h	VAR	following_error_window	UINT32	RW
6066 _h	VAR	following_error_time_out	UINT16	RW
6067 _h	VAR	position_window	UINT32	RW
6068 _h	VAR	position_time	UINT16	RW
60FA _h	VAR	control_effort	INT32	RO

Index	6062 _h
Name	position_demand_value
Object Code	VAR
Data Type	INT32
Access	RO
PDO Mapping	YES
Units	position units
Value Range	
Default Value	

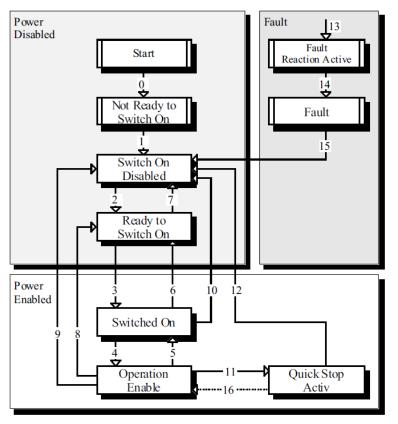
Index	6064 _h
Name	position_ actual _value
Object Code	VAR
Data Type	INT32
Access	RO
PDO Mapping	YES
Units	position units
Value Range	
Default Value	

Index	6065 _h
Name	following_error_window
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	position units
Value Range	0 - 7FFFFFFF _h
Default Value	30000

Index	6066 _h
Name	following_error_time_out
Object Code	VAR
Data Type	UINT16
Access	RW

PDO Mapping	YES
Units	ms
Value Range	0 - 65535
Default Value	200

Index	60FA _h
Name	control_effort
Object Code	VAR
Data Type	INT32
Access	RO
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	


6067 _h
position_window
VAR
UINT32
RW
YES
position units
10

Index	6068 h
Name	position_time
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	ms
Value Range	0 - 65535
Default Value	50

6.5 Device Control

6.5.1 Control State Machine

The master controls the drive through the controlword, and knows the current status of the drive by reading the statusword of the drive.

According to figure above, the state diagram can be divided into three main parts: "Power Disabled" (means the main power supply is switched off), "Power Enabled" (the main power supply is turned on) and "Fault". All states enter "Fault" after an alarm occurs. After switching on the servo controller initializes itself and enters the state SWITCH_ON_DISABLED. In this state CAN communication is possible and the servo controller can be parameterized (e.g. the working mode of drive can be set to "PP" mode). The main power supply remains switched off and the motor is not excited. Through the state transitions 2, 3 and 4, the state OPERATION_ENABLE will be reached. In this state the main power supply is turned on and the servo controller controls the motor according to the parameterized working mode. Therefore, it must be confirmed that the parameters of the drive have been correctly configured and the corresponding input value is zero before such state. The circuit main power supply will be turned off after state transition 9 is done. Once the driver alarms, the driver enters FAULT.

Status	Description
Not Ready to Switch On	The servo controller executes its self-test. The CAN communication is not working
Switch On Disabled	The self-test has been completed. The CAN communication is activated
Ready to Switch On	Servo driver is waiting for the state of Switch and servo motor is not at main power supply
Switched On The main power supply is turned on	
Operation Enable The motor is under voltage and is controlled according to working mod	
Quick Stop Active	Servo driver will be stopped through its fixed way
Fault Reaction Active	Servo driver tests error and will be stopped through its fixed way, with motor's main power supply turned on

Status	Description
Fault	An error has occurred. The main power supply has been turned off.

6.5.2 Related Parameters of Device Control

Index	Object	Name	Туре	Attr.
6040 _h	VAR	controlword	UINT16	RW
6041 _h	VAR	statusword	UINT16	RO
605A _h	VAR	quick_stop_option_code	INT16	RW
605B _h	VAR	shutdown_option_code	INT16	RW
605C _h	VAR	disabled_operation_option_code	INT16	RW
605D _h	VAR	halt_option_code	INT16	RW
605E _h	VAR	fault_reaction_option_code	INT16	RW

6.5.3 Controlword

	Index			6040 _h						
	Name			controlw	ord					
	Object Coo	de		VAR						
	Data Type			UINT16						
	Access			RW						
	PDO Mappi	ng		YES						
	Units									
	Value Rang	ge								
	Default Va	lue		0						
15 11	10 9	8	7	6 4		3	2	1	0	
manufacture specific	r reserved	halt	Fault reset	Operation mode spec		Enable operation	Quick stop	Enable voltage	Switch on	

Bit0to3 and Bit7

The transmission of the state machine is triggered by the control command composed of those 5 bits.

Command	Fault reset	Enable operation	Quick stop	Enable voltage	Switch on	Transitions
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3*
Switch on	0	1	1	1	1	3**
Disable voltage	0	Х	Х	0	Х	7,9,10,12
Quick stop	0	Х	0	1	Х	7,10,11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4,16
Fault reset	<u> </u>	Х	Х	Х	Х	15

[Note] X means this bit could be ignored.

Bit4, 5, 6 and 8

The definition of this 4 bit is different in different control mode.

Bit	Control mode				
ыс	profile position mode	profile velocity mode	homing mode		
4	new_set_point	Reserve	start_homeing_operation		
5	change_set_immediately	Reserve	Reserve		
6	abs/rel	Reserve	Reserve		
8	Halt	Halt	Halt		

Other bits

All reserved.

6.5.4 Statusword

Index	6041 _h
Name	statusword
Object Code	VAR
Data Type	UINT16
Access	RO
PDO Mapping	YES
Units	
Value Range	
Default Value	

Explanation of statusword bit is as below:

Bit	Description
0	Ready to switch on
1	Switched on

Bit	Description
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick stop
6	Switch on disabled
7	Warning
8	Reserved
9	Remote
10	Target reached
11	Internal limit active
13 to 12	Operation mode specific
15 to 14	Reserved

Bits 0~3, Bit 5 and Bit 6

The combination of these bits indicates the status of drives.

Value (binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Bit 4: Voltage enabled

Main power supply is turned on when this bit is 1.

Bit 5: Quick stop

Driver will halt by following settings (605A h: quick_stop_option_code) when this bit is 0.

Bit 7: Warning

Driver detects alarm when this bit is 1.

Bit 9: Warning

Servo can deal with Controlword when the enabling state of this bit is at 1.

Bit 10: Target reached

In different control modes the meaning of this bit is different.

- In profile position mode, when set position is reached, this bit is set. When Halt is booted, speed is reduced to 0 and this bit will be set. When new position is set, this bit will be cleared.
- In profile Velocity Mode, when the speed reaches the targeted speed, this bit will be set. When Halt is booted and speed is reduced to 0, this bit is set.

Bit 11: Internal limit active

When this bit is 1, it indicates that internal torque has surpassed the set value, or reached the max forward/reverse limit position. It can be confirmed by reading object 60FDh (digital inputs).

<u>Bits 12~13</u>

These 2 bits have different meanings in different control mode.

Dit	Control Mode		
Bit	profile position mode	profile velocity mode	homing mode
12	Set-point acknowledge	Speed	Homing attained
13	Following error	Max slippage error	Homing error

Other bits

All reserved.

6.5.5 Shutdown_option_code

The object shutdown_option_code determines the behavior when the state transition from OPERATION ENABLE to READY TO SWITCH ON is executed.

Index	605B _h
Name	shutdown_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0,1
Default Value	0

Value	Description
0	Drive enters OFF state and stops according to Pn003.0 setting
1	After deceleration stops at 6084h, the drive cuts off the power supply to the motor

6.5.6 Disable_operation_option_code

The object disable_operation_option_code determines the behavior if the state transition from OPERATION ENABLE to SWITCHED ON is executed.

Index 605C h	
Name disable_operation	on_option_code
Object Code VAR	
Data Type INT16	
Access RW	
PDO Mapping NO	
Units	
Value Range 0,1	
Default Value 0	

Value	Description
0	Drive enters OFF state and stops according to Pn003.0 setting
1	After decelerates and stops at 6084h, the drive will cut off the power supply to the motor

6.5.7 Quick_stop_option_code

The object quick_stop_option_code determines the behavior if the state transition from Operation Enable to Quick Reaction Active is executed.

Index	605A _h
Name	quick_stop_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0,1,2,5,6
Default Value	2

Value	Description	
0	Drive enters OFF state and stops according to Pn003.0 setting	
1	After decelerates and stops at 6084h, the drive will cut off the power supply to the motor	
2	After decelerates and stops at 6085h, the drive will cut off the power supply to the motor	
3,4	_	
5	After decelerates and stops at 6084h, the drive will stay in QuickStop.	
6	After decelerates and stops at 6085h, the drive will stay in QuickStop.	

6.5.8 Halt_option_code

halt_option_code determines how to stop when bit.8 (halt) of controlword is set to 1.

Index	605D _h	
Name	halt_option_code	
Object Code	VAR	
Data Type	INT16	
Access	RW	
PDO Mapping	NO	
Units		
Value Range	1,2	
Default Value	0	

Value	Description	
1	Motor decelerates and stops.	
2	Motor decelerates and stops urgently.	

6.5.9 Fault_reaction_option_code

When an error is occurred, fault_reation_option_code determines how to stop.

Index	605Е _h
Name	fault_reaction_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0
Default Value	0

Value	Description
0	Shut down the motor excitation signal. Motor is freely rotatable.

6.6 Control Mode

DX3 currently supports 5 control modes in CANopen CiA402:

- Homing Mode
- Profile Position Mode
- Profile Velocity Mode
- Profile Torque Mode
- Interpolated Position Mode

Relevant parameter of control mode

Index	Object	Name	Туре	Attr.
6060 _h	VAR	modes_of_operation	INT8	RW
6061 _h	VAR	modes_of_operation_display	INT8	RO

Modes_of_operation

Drive control mode will be determined by parameters of modes_of_operation.

Index	6060 _h
Name	modes_of_operation
Object Code	VAR
Data Type	INT8
Access	RW
PDO Mapping	YES
Units	
Value Range	1,3,4,6,7
Default Value	1

Value	Description	
1	rofile Position Mode	
3	Profile Velocity Mode	
4	Profile Torque Mode	
6	Homing Mode	
7	Interpolated Position Mode	

Modes_of_operation_display

Drive current control mode could be read from parameters in modes_of_operation_display.

6061 _h

Name

modes_of_operation_display

Object Code	VAR
Data Type	INT8
Access	RO
PDO Mapping	YES
Units	
Value Range	1,3,4,6,7
Default Value	1

[Note] The current control mode could be only known from parameters in modes_of_operation_display.

6.7 Homing Mode

Servo drive currently supports multiple homing mode, and users could choose the suitable homing mode.

The user can determine the way of homing, and its velocity and acceleration. After the servo controller has found its reference, the current position is displayed as the value set by home_offset (607C $_{\rm h}$).

6.7.1 Control word of homing mode

15 ~ 9	8	7 ~ 5	4	3 ~ 0
*	Halt	*	home_ operation _ start	*

*: Refer to previous chapters

Name	Value	Description
Homing	0	Homing mode inactive
operation start	0 → 1	Start homing mode
	1	Homing mode active
	1 → 0	Interrupt homing mode
Halt	0	Execute the instruction of bit 4
	1	Stop axle with homing acceleration

6.7.2 Status word of homing mode

15 ~ 14	13	12	11	10	9 ~ 0
*	homing_error	homing_attained	*	target_reached	*

*: Refer to previous chapters

Name	Value	Description	
Target	0	Halt = 0: Home position not reached	
reached		Halt = 1: Axle decelerates	
	1	Halt = 0: Home position reached	
		Halt = 1: Axle has velocity 0	
Homing 0		Homing mode not yet completed	
attained	1	Homing mode carried out successfully	
Homing	0	No homing error	
error 1		Homing error occurred;	
		Homing mode carried out not successfully;	
		The error cause is found by reading the error code	

Index	Object	Name	Туре	Attr.
607C _h	VAR	home_offset	INT32	RW
6098 _h	VAR	homing_method	INT8	RW
6099 _h	ARRAY	homing_speeds	UINT32	RW
609A _h	VAR	homing_acceleration	INT32	RW

6.7.3 Related Parameters of homing mode

home_offset

The parameter home_offset determines the distance between the reference position and the zero position.

	→
Index	607C _h
Name	home_offset
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	position units
Value Range	
Default Value	0

homing_method

4 kinds of signals can be used as the homing signal: positive limit switch, negative limit switch, reference switch and C pulse.

Index	6098 _h
Name	homing_method
Object Code	VAR
Data Type	INT8
Access	RW
PDO Mapping	YES
Units	
Value Range	1-14, 17-22, 23-30, 33-35
Default Value	1

List of Homing Modes

Mode	Direction	Target	Reference Position	CiA402
1	Negative	NOT	C pulse	1
2	Positive	POT	C pulse	2
3	Negative	Reference switch	C pulse	3
4	Positive	Reference switch	C pulse	4
5	Negative	Reference switch	C pulse	5
6	Positive	Reference switch	C pulse	6
7	Positive	Reference switch	C pulse	7
8	Positive	Reference switch	C pulse	8
9	Positive	Reference switch	C pulse	9
10	Positive	Reference switch	C pulse	10
11	Negative	Reference switch	C pulse	11
12	Negative	Reference switch	C pulse	12
13	Negative	Reference switch	C pulse	13
14	Negative	Reference switch	C pulse	14
17	Negative	NOT	NOT	17
18	Positive	РОТ	POT	18
19	Negative	Reference switch	Reference switch	19
20	Positive	Reference switch	Reference switch	20
21	Negative	Reference switch	Reference switch	21
22	Positive	Reference switch	Reference switch	22
23	Positive	Reference switch	Reference switch	23
24	Positive	Reference switch	Reference switch	24
25	Positive	Reference switch	Reference switch	25
26	Positive	Reference switch	Reference switch	26
27	Negative	Reference switch	Reference switch	27
28	Negative	Reference switch	Reference switch	28
29	Negative	Reference switch	Reference switch	29
30	Negative	Reference switch	Reference switch	30
33	Negative	Current position	C pulse	33
34	Positive	Current position	C pulse	34
35		Current position	Current position	35
-4	Positive	Target torque	C pulse	Defined by manufacturer

Mode	Direction	Target	Reference Position	CiA402
-3	Negative	Target torque	C pulse	Defined by manufacturer
-2	Positive	Target torque	Target torque	Defined by manufacturer
-1	Negative	Target torque	Target torque	Defined by manufacturer

homing_speeds

Two kinds of speed are required to find reference point, speed during search for switch and speed during search for zero.

Index	6099 _h
Name	homing_speeds
Object Code	ARRAY
No. of Elements	2
Data Type	INT32

Sub-Index	01 _h
Name	speed_during_search_for_switch
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	5000

Sub-Index	02 h
Name	speed_during_search_for_zero
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	100

Pn207 (stopper torque)

The locked-rotor torque value used by the homing modes -4, -3, -2 and -1. When the machine hits the stop and reaches the torque value set by Pn207 and keeps the filter time set by Pn208, find the C pulse in the reverse direction or make the current position for the origin.

Index	3049 _h
Name	Pn207 (stopper torque)
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	1% rated torque
Value Range	0-200
Default Value	20

Pn208 (blocking time)

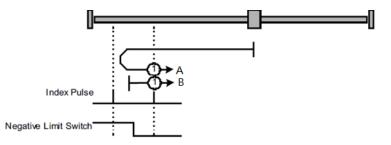
The locked-rotor torque value used by the homing modes -4, -3, -2 and -1. When the machine hits the stop and reaches the torque value set by Pn207 and keeps the filter time set by Pn208, find the C pulse in the reverse direction or make the current position for the origin.

Index	304A _h
Name	Pn208 (Blocking time)
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	0.125ms
Value Range	0-10000
Default Value	100

homing_acceleration

The objects homing_acceleration determine the acceleration and deceleration during homing.

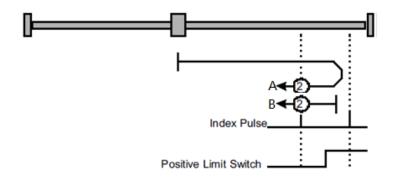
Index	609A _h
Name	homing_acceleration
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES


Units	acceleration units
Value Range	
Default Value	100000

6.7.4 Homing Methods

Method 1: Using C pulse and negative limit switch

A: When homing mode is enabled, if negative limit switch N-OT=0, the drive first moves quickly to the negative direction and stops until it reaches the rising edge of negative limit switch (N-OT). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative limit switch (N-OT).


B: When homing mode is enabled, if negative limit switch N-OT=1, the drive first moves slowly to the positive direction, and stops until reaches the 1st C pulse of falling edge of negative limit switch (N-OT).

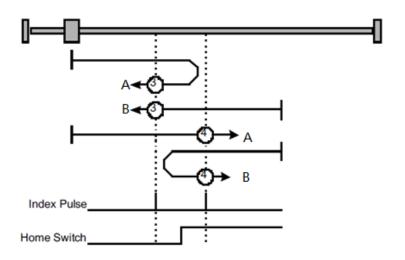
Method 2: Using C pulse and positive limit switch

A: When homing mode is enabled, if positive limit switch P-OT=0, the drive first moves quickly to the positive direction, and stops until it reaches the rising edge of positive limit switch (P-OT). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of positive limit switch (P-OT).

B: When homing mode is enabled, if positive limit switch P-OT=1, the drive first moves slowly to the negative direction, and stops until reaches the 1st C pulse of falling edge of positive limit switch (P-OT).

Methods 3 and 4: Using C pulse and positive reference switch

Method 3


A: When homing mode is enabled, if positive reference switch H-S=0, the drive first moves quickly to the positive direction, and stops until it reaches the 1st C pulse of rising edge of positive reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of positive reference switch (H-S).

B: When homing mode is enabled, if positive reference switch H-S =1, the drive first moves slowly to the negative direction, and stops until reaches the 1st C pulse of falling edge of positive reference switch (H-S).

Method 4

A: When homing mode is enabled, if positive reference switch H-S =0, the drive first moves slowly to the positive direction, and stops until reaches the 1^{st} C pulse of falling edge of positive reference switch (H-S).

B: When homing mode is enabled, if positive reference switch H-S=1, the drive first moves quickly to the negative direction, and stops until it reaches the 1st C pulse of falling edge of positive reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of rising edge of positive reference switch (H-S).

Methods 5 and 6: Using C pulse and negative reference switch

Method 5

A: When homing mode is enabled, if negative reference switch H-S=1, the drive first moves slowly to the positive direction, and stops until it reaches the 1st C pulse of falling edge of negative reference switch (H-S).

B: When homing mode is enabled, if positive reference switch H-S =0, the drive first moves quickly to the negative direction, and stops until reaches the 1st C pulse of rising edge of negative reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S).

Method 6

A: When homing mode is enabled, if negative reference switch H-S =1, the drive first moves quickly to the positive direction, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S).

B: When homing mode is enabled, if negative reference switch H-S=0, the drive first moves slowly to the negative direction, and stops until it reaches the 1st C pulse of rising edge of negative reference switch (H-S).

Methods 7~14: Using reference switch , limit switch and C pulse

Methods 7~14 use the reference switch which is only active over parts of the travel.

When the positive limit switch (POT) is used for homing, the initial direction of methods 7~10 is the positive direction

• Method 7

A: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, but not reaches positive limit switch, and stops until it reaches the rising edge of reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches 1st C pulse of the falling edge of reference switch (H-S).

B: When homing mode is enabled, if reference switch H-S = 1, the drive first moves slowly into the negative direction, and stops until reaches 1^{st} C pulse of the falling edge of reference switch (H-S).

C: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, reaches positive limit switch, and moves quickly to the negative direction. When it reaches the rising edge of the reference switch (H-S), it starts to decelerate and continues to run in the negative direction, and stops when it reaches the 1st C pulse after the falling edge of the reference switch (H-S).

Method 8

A: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, but not reaches positive limit switch, and slows down until it reaches the rising edge of reference switch (H-S). Afterwards it moves to positive direction, and stops until finds the 1st C pulse.

B: When homing mode is enabled, if reference switch H-S = 1, the drive first moves slowly to the negative direction, and turn around until reaches the falling edge of reference switch (H-S). Then moves slowly into the positive direction, and stops when it reaches the 1^{st} C pulse after the rising edge of the reference switch (H-S).

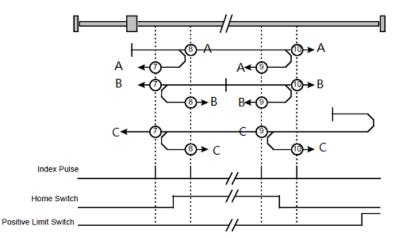
C: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly to the positive direction, and reaches positive limit switch; then it moves quickly into the negative direction, and slows down after reaching the rising edge of reference switch (H-S). Afterwards it moves to negative direction, and returns to positive direction slowly. It stops until reaches the 1st C pulse of the rising edge of reference switch (H-S).

Method 9

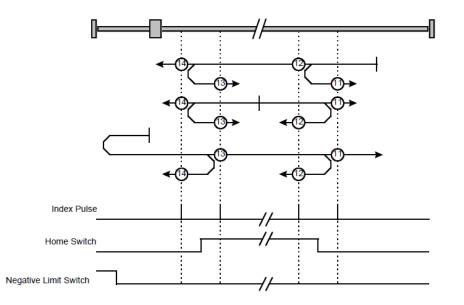
A: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the positive direction quickly, but not reaches the positive limit switch, and it slowly down after reaching the rising edge of the reference switch (HS), and continues to run slowly in the positive direction. Afterwards it slows down and stops after reaching the falling edge of the reference switch (HS). Then the drive returns slowly, and stops when it reaches the 1st C pulse behind the rising edge of the reference switch (HS).

B: When homing mode is enabled, if reference switch H-S = 1, the drive runs slowly in the positive direction directly, reverses after reaching the falling edge of the reference switch (H-S). Afterwards it

moves slowly in the negative direction, and stops after it reaches the 1st C pulse of the rising edge of the reference switch (H-S).

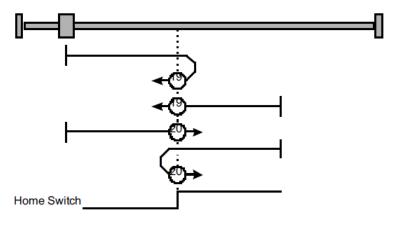

C: When homing mode is enabled, if reference switch H-S=0, the drive moves in the positive direction first, and when it reaches the positive limit switch, the drive automatically runs in the reverse direction at a high speed. After reaching the rising edge of the reference switch (HS), it slows down and continues to move slowly in the negative direction, and stops until the 1st C pulse is found.

Method 10


A: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the positive direction quickly, but reaches the positive limit switch, and it slows down when reaching the rising edge of the reference switch (HS), and continues to run slowly in the positive direction. Afterwards it continues to run in the positive direction after reaching the falling edge of the reference switch (HS), and stops until the 1st C pulse is found.

B: When homing mode is enabled, if reference switch H-S = 1, the drive runs slowly in the positive direction, and stops at the 1st C pulse behind the falling edge of the reference switch (H-S).

C: When homing mode is enabled, if reference switch H-S=0, the drive moves in the positive direction first, and when it reaches the positive limit switch, the drive automatically runs in the reverse direction at a high speed. After reaching the rising edge of the reference switch (HS), it slows down and stops, and then returns slowly, and continues to move slowly in the positive direction. It stops after reaching the 1st C pulse of the falling edge of the reference switch (H-S.



When the negative limit switch (NOT) is used for homing, the method 11~14 is almost same as method 7~10, and the drive first moves to the negative direction.

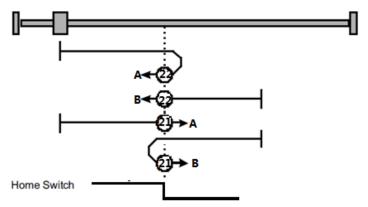
Methods 17~20, 23~30: Not using C pulse

Homing methods 17-30 are similar to methods 1-4, and 7-14, but the target homing position is not relied on C pulse any more but on the change of limit switch or reference point. For example, as below, method 19 and method 20 are just similar to method 3 and method 4.

Methods 21, 22 Homing by using reference switch

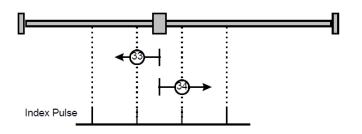
These two homing methods are similar to 5 and 6, except that the C pulse is not used for target zero position, but depends on the change of the reference switch.

Method 21

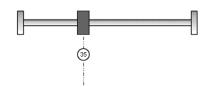

A: When homing mode is enabled, if reference switch H-S = 1, the drive runs slowly in the positive direction, and stops when it reaches the falling edge of the reference switch (H-S).

B: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the negative direction quickly, slows down and stops when it reaches the rising edge of the reference switch (HS), then the drive returns slowly and runs in the positive direction. It stops when reaching the falling edge of the reference switch (HS).

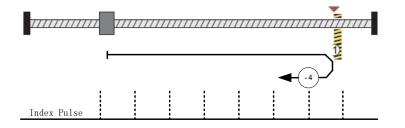
Method 22


A: When homing mode is enabled, if reference switch H-S = 1, the drive first moves in the positive direction quickly, slows down and stops when it reaches the falling edge of the reference switch (HS). Afterwards it returns slowly, runs in the negative direction, and stops when reaching the rising edge of the reference switch (HS).

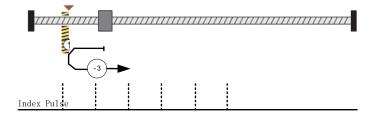
B: When homing mode is enabled, if reference switch H-S=0, the drive runs slowly in the negative direction, and stops when reaching the rising edge of the reference switch (H-S).


Methods 33 and 34: Homing by using C pulse

- Method 33: The drive moves slowly into the negative direction, and stops when reaching the 1st C pulse.
- Method 34: The drive moves slowly into the positive direction, and stops when reaching the 1st C pulse.


Method 35: Homing on the current position

In this method, the current position shall be taken to be the home position.


Method-4: Movement in positive direction, hitting an end and reversing to travel, the target homing position is the C pulse

In this method, the motor moves in positive direction. When it hits an end so that the torque set in Pn207 is reached for the blocking time set in Pn208, movement in the opposite direction, and the target homing position is the first C pulse.

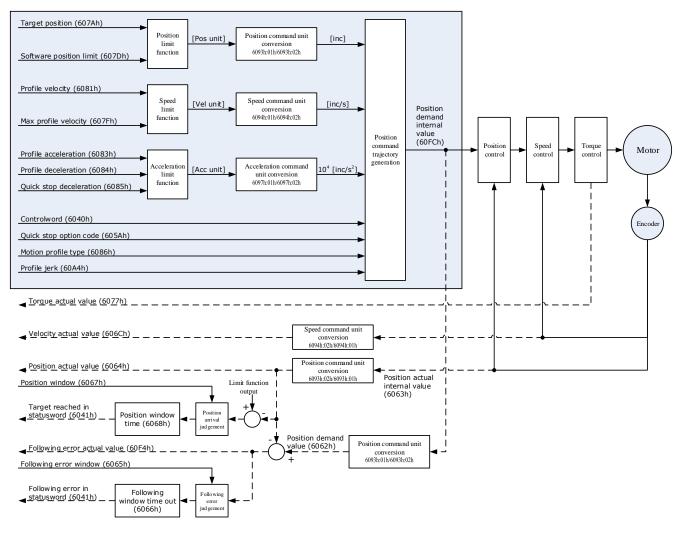
Movement in negative direction, hitting an end and reversing to travel, the target homing position is the C pulse

In this method, the motor moves in negative direction. When it hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, movement in the opposite direction, and the target homing position is the first C pulse.

<u>Method</u> -2: <u>Movement in positive direction, hitting an end, makes the current position for the homing</u> <u>point</u>

In this method, the motor moves in positive direction. When the drive hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, and makes the current position for the origin.

<u>Method -1: Movement in negative direction, hitting an end, makes the current position for the homing point</u>


In this method, the motor moves in negative direction. When the drive hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, and makes the current position for the origin.

Notes: When starting homing on homing method about input signal, the rotation direction of servo motor is associated with the initial status of the limit switch. Changing the initial status by inverse input, if it is necessary.

6.8 Profile Position Mode

6.8.2 Block Diagram of Profile Position Mode

6.8.3 Control Word

15 ~ 9	8	7	6	5	4	3 ~ 0
*	Halt	*	abs / rel	change set immediately	New set-point	*

*: refer to previous chapters

Name	Value	Description
New	0	Does not assume target position
set-point	1	Assume target position
Change set		
immediately 1		Interrupt the actual positioning and start the next positioning
abs / rel	0	Target position is an absolute value
	1	Target position is a relative value
Halt	0	Execute positioning
	1	Stop axle with profile deceleration (if not supported with profile acceleration)

6.8.4 Staus Word

15 ~ 14	13	12	11	10	9~0
*	Following error	Set_point acknowledge	*	Target reached	*

*: refer to previous chapters

Name	Value	Description	
Target	0	Halt = 0: <i>Target position</i> not reached	
reached		Halt = 1: Axle decelerates	
	1	Halt = 0: <i>Target position</i> reached	
		Halt = 1: Velocity of axle is 0	
Set-point 0		Trajectory generator has not assumed the positioning values (yet)	
acknowledge	1	Trajectory generator has assumed the positioning values	
Following	0	No following error	
error	1	Following error	

6.8.5 Related Parameters

Index	Object	Name	Туре	Attr.
607A _h	VAR	target_position	INT32	RW
6081 _h	VAR	profile_velocity	UINT32	RW
6082 _h	VAR	end_velocity	UINT32	RW
6083 _h	VAR	profile_acceleration	UINT32	RW
6084 _h	VAR	profile_deceleration	UINT32	RW
6085 _h	VAR	quick_stop_deceleration	UINT32	RW
6086 _h	VAR	motion_profile_type	INT16	RW
60A4-01 _h	VAR	Profile_jerk1	UINT32	RW

target_position

The object target_position is the given target position, which (target_position) is interpreted either as an absolute or relative position. This depends on bit 6 (relative) of the object control word.

Index	607A _h
Name	target_ position
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	position units
Value Range	
Default Value	0

profile_velocity

The object profile_velocity specifies the speed that usually is reached during a positioning motion at the end of the acceleration ramp.

Index	6081 _h			
Name	profile_velocity			
Object Code	VAR			
Data Type	UINT32			
Access	RW			
PDO Mapping	YES			
Units	speed units			
Value Range				
Default Value	0			

end_velocity

End_velocity is the speed when servo motor reaches the target_position. Normally we set this value as 0 in order to stop the servo motor when the servo motor reaches the requested position. But in continuous multiple position, this value could be set as a non-zero value.

Index	6082 _h
Name	end_velocity
Object Code	VAR
Data Type	UINT32
Access	RW

PDO Mapping	YES
Units	speed units
Value Range	
Default Value	0

profile_acceleration

Profile_acceleration is the acceleration speed before reaching the target position.

Index	6083 _h	
Name	profile_acceleration	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	acceleration units	
Value Range		
Default Value	100000 R/10min/s	

profile_deceleration

Profile_deceleration is the deceleration speed before reaching the target position.

Index	6084 _h	
Name	profile_deceleration	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	acceleration units	
Value Range		
Default Value	100000 R/10min/s	

quick_stop_deceleration

Quick_stop_deceleration is the deceleration speed in Quick Stop.

Index	6085 _h
Name	quick_stop_deceleration
Object Code	VAR

Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	acceleration units
Value Range	
Default Value	200000 R/10min/s

motion_profile_type

Motion_profile_type is used to select the motion curve. Now we only support trapezoid speed curve (set as 0) and S speed curve (set as 2).

Index	6086 _h		
Name	motion_profile_type		
Object Code	VAR		
Data Type	INT16		
Access	RW		
PDO Mapping	YES		
Units			
Value Range	0or2		
Default Value	0		

<u>profile_jerk1</u>

Profile_jerk1 is used to set the jerk of speed profile. The value is smaller, the speed changing is more smooth.

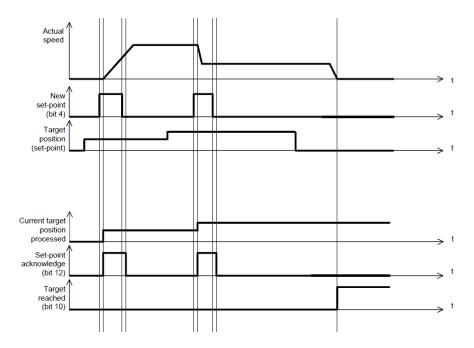
Index	60A4 -01 _h	
Name	profile_jerk1	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	jerk units	
Value Range	1-20	
Default Value	5pulse/(s*100µs*100µs)	

6.8.6 Function Description

When the speed profile is trapezia (motion_profile_type=0), two different ways to apply target positions are supported:

Single-step

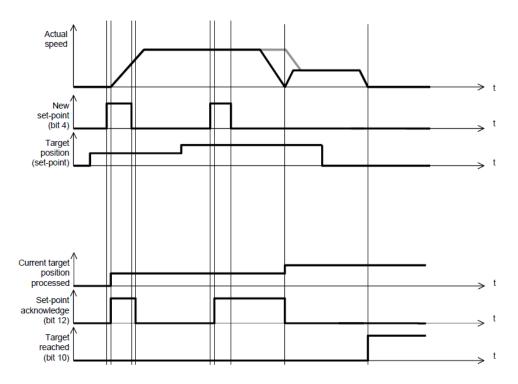
When the current position is being executed, the controller resends a new position, and at the same time gives a rising edge to bit4 of the controlword, the drive then will re-plan and execute based on the latest position and speed.

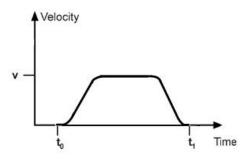

Continuous-step

After the motor reaches the target position, the drive informs the host of "target position reached", and then gets a new target position and starts motion. Before getting a new target position, the motor speed is usually zero.

Both of the above two methods can be changed in real time by bit4 and bit5 of the controlword and bit12 (set_point_acknowledge) of the status word statusword. The position control being executed can be interrupted through the handshake mechanism, and the target position can be reset by using these few words.

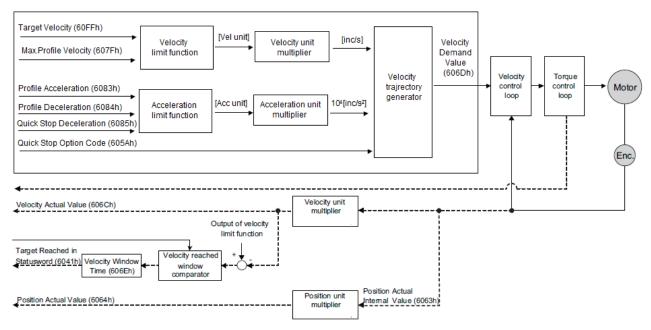
Single-step setting procedure


- 1. Set the NMT status into Operational and set the control mode parameter (6060 $_{\rm h}$) as 1.
- 2. According to the actual demand, we could set the target position (target_positon: 607A $_{\rm h}$) and so on.
- 3. We need set bit4 (new_set_point) of the control word as 1, bit 5 (change_set_immediately) as 0, bit 6 (absolute/comparative) should be determined by whether the reference target position is an absolute value or a comparative value.
- 4. We use bit12 (set_point_acknowledge) of the status word to configure the servo drive acknowledge mechanism. And then we start to operate position control.
- 5. After reaching the target position, servo drive will need to respond through bit 10 (target_reached) of the status word. And then servo drive will follow the program to keep moving or accept new target position.


Continuous-step setting procedure

- 6. At first, set NMT as Operational and control mode parameter (6060 h) as 1.
- 7. According to actual demand, set the first target position (target_position: 607A h), target speed, acceleration/deceleration and other Related Parameters.

- 8. Set bit 4 (new_set_point) of control word as 1. Set bit 5 (change_set_immediately) as 0. Set bit6 (absolute/comparative) according to the type of object position.
- 9. Set bit 12 (set_point_acknowledge) of the status word and then start to operate position control.
- 10. Set the second target position (target_position: 607A h), target speed, acceleration/deceleration speed.
- 11. Set bit4 (new_set_point) as 1, bit 5 (change_set_immediately) as 0. Set Bit6 (absolute/comparative) according to the target position type.
- 12. After reaching the first target position, the servo drive will not stop and keep moving toward the second target position. After reaching the second target position, the servo drive will respond through status word bit 10 (target_reached). Then the servo motor will follow the program to keep moving or accept new target position.



When the speed profile is S (motion_profile_type=2), only **Continuous-step setting** is available. 6083_h (profile_acceleration) limits max acceleration, and 6081h (profile_velocity) limits max speed. 60A4-01h (VAR Profile_jerk1) limits the jerk. Only symmetrical S linear is available currently.

6.9 Profile Velocity Mode

6.9.1 Block Diagram of Profile Velocity Mode

6.9.2 Control Word

15 ~ 9	8	7 ~ 4	3 ~ 0
*	Halt	*	*

*: Refer to previous chapters

Name	Value	Description			
Halt	0	Execute the motion			
	1	Stop axle			

6.9.3 Status Word

15 ~ 14	13	12	11	10	9 ~ 0
*	MaxSlippageError	Speed	*	Target reached	*

*: Refer to previous chapters

Name	Value	Description
Target	0	Halt = 0: Target velocity not (yet) reached
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Target velocity reached
		Halt = 1: Axle has velocity 0
Speed	0	Speed is not equal 0
	1	Speed is equal 0
Max slippage error	0	Maximum slippage not reached
	1	Maximum slippage reached

Index	Object	Name	Туре	Attr.
6069 _h	VAR	velocity_sensor_actual_value	INT32	RO
606B _h	VAR	velocity_demand_value	INT32	RO
606C _h	VAR	velocity_actual_value	INT32	RO
606D _h	VAR	velocity_window	UINT16	RW
606E _h	VAR	velocity_window_time	UINT16	RW
606F _h	VAR	velocity_threshold	UINT16	RW
6070 _h	VAR	velocity_threshold_time	UINT16	RW
607F _h	VAR	Max profile velocity	UINT32	RW
60FF _h	VAR	target_velocity	INT32	RW

6.9.4 Related Parameters

velocity_sensor_actual_value

The master could read velocity_sensor_actual_value to know the current velocity. The parameter's unit is internal speed unit.

Index	6069 _h
Name	velocity_sensor_actual_value
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	0.1rmps (1R/10min)
Value Range	
Default Value	

velocity_demand_value

The master can read velocity_demand_value to know the current reference speed value of the servo drive. The unit of this parameter is user's velocity unit.

Index	606В _h
Name	velocity_demand_value
Object Code	VAR
Data Type	INT32
Access	RO
PDO Mapping	YES
Units	speed units
Value Range	

Default Value

velocity_actual_value

The master can read velocity_ actual _value to know the current velocity of the servo motor. The unit of this parameter is user's velocity unit.

Index	606С _н
Name	velocity_actual_value
Object Code	VAR
Data Type	INT32
Access	RO
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	

velocity_window

The difference between velocity_actual_value (606C $_h$) and target_velocity (60FF $_h$) is defined as actual velocity error window. If the actual velocity error window is always smaller than velocity_window (606D $_h$) within the time set by velocity_window_time (606E $_h$), then bit 10 of status word (target_reached) will be set to indicate that the set velocity has been reached.

Index	606D _h
Name	velocity_window
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	20 R/10min

velocity_window_time

Velocity window comparator is composed of velocity_window_time and velocity_window.

Index	606E h
Name	velocity_window_time
Object Code	VAR

Data Type	UINT16	
Access	RW	
PDO Mapping	YES	
Units	ms	
Value Range		
Default Value	0	

velocity_threshold

Velocity_threshold indicates a range close to zero speed in order to define if the servo motor has already stopped.

Index	606F _h
Name	velocity_threshold
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	50

velocity_threshold_time

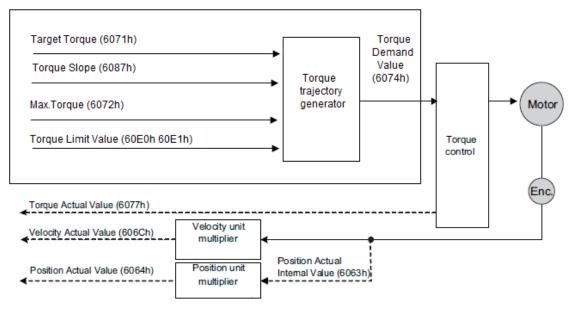
Velocity_threshold_time is used to set the shortest time when servo motor's speed is under velocity threshold. The unit is: ms. When the time that servo motor's speed is lower than the threshold is more than velocity_threshold_time, status word bit 12 (speed is zero) will be set as 1.

Index	6070 _h
Name	velocity_threshold_time
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	ms
Value Range	
Default Value	0

Max profile velocity

The object max profile velocity is the speed that the motor cannot exceed. Its unit is the unit of customer's speed.

Index	607F _h
Name	Max profile velocity
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	0


target_velocity

target_velocity is the reference speed.

Index	60FF h
Name	target_velocity
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	0

6.10 Profile Torque Mode

6.10.1 Block Diagram of Profile Torque Mode

6.10.2 Control Word

15 ~ 9	8	7 ~ 4	3 ~ 0
*	Halt	*	*

*: refer to previous chapters

Bit	Value Definition	
0	0	The motion shall be executed 8 or continued
0	1	Axis shall be stopped according to the halt option code (605Dh)

6.10.3 Status Word

15 ~ 14	13	12	11	10	9 ~ 0
*	*	*	*	Target reached	*

*: refer to previous chapters

Bit	Value	Definition
10	0	Target torque not reached
	1	Target torque reached

Index	Object	Name	Туре	Attr.
6071 h	VAR	target_torque	INT16	RW
6072 h	VAR	Max torque	UINT16	RW
6074 _h	VAR	torque_demand	INT16	RO
6077 _h	VAR	torque_actual_value	INT16	RO
6087 _h	VAR	torque_slope	UINT32	RW

6.10.4 Related Parameters

target_torque

The master can send a torque reference to the drive through target_torque, the unit is 0.1% of the rated motor torque, which is indicated on the motor nameplate.

Index	6071 _h
Name	target_torque
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

Max torque

Max torque, the maximum torque allowed by the motor during operation, the unit is 0.1% of the rated torque of the motor.

Index	6072 _h
Name	Max torque
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	0

torque_demand

The output of the torque reference generator. The drive generates the command slope according to the value of target_torque and torque_slope.

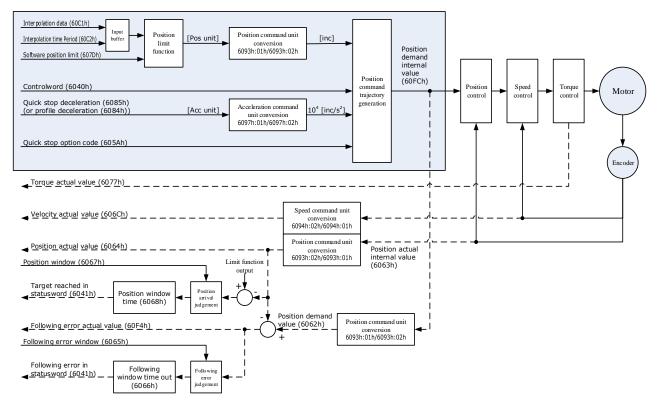
Index	6074 _h
Name	torque_demand
Object Code	VAR
Data Type	INT16
Access	RO
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

torque_actual_value

The master can get the current output torque of the motor by reading torque_actual_value. Its unit is 0.1% of rated torque of the motor.

Index	6077 _h
Name	torque_actual_value
Object Code	VAR
Data Type	INT16
Access	RO
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

torque_slope


The master can set the change speed of torque reference via torque_slope. Its unit is 0.1% of rated torque per second.

Index	6087 _h
Name	torque_slope
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	0.1% rated torque per second

Value Range	
Default Value	

6.11 Interpolated Position Mode

6.11.1 Block Diagram of Interpolated Position Mode

6.11.3 Control Word

15 ~ 9	8	7	6	5	4	3 ~ 0
*	Halt	*	*	*	Enable ip mode	*
*. unfor to provide a chapter						

: refer to previous chapters

Name	Value	Description
Enable ip	0	Interpolated position mode inactive
mode	1	Interpolated position mode active
Halt	0	Execute the instruction of bit 4
	1	Stop axle

6.11.4 Status Word

15 ~ 14	13	12	11	10	9 ~ 0
*	*	ip mode active	*	Target reached	*

*: refer to previous chapters

Name	Value	Description
Target	0	Halt = 0: Position not (yet) reached
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Position reached
		Halt = 1: Axle has velocity 0
ip mode active	0	Interpolated position mode inactive
	1	Interpolated position mode active

6.11.5 Related Parameters

Index	Object	Name	Туре	Attr.
60C0 _h	VAR	Interpolation sub mode select	INT16	RW
60C1 _h	ARRAY	Interpolation data record	INT32	RW
60C2 _h	RECORD	Interpolation time period		RW

Interpolation sub mode select

Interpolation sub mode select is used to select the method of interpolation under IP control. Only the linear interpolation is available.

Index	60C0h
Name	Interpolation sub mode select
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Value Range	0
Default Value	0
Comment	0: Linear interpolation

Interpolation data record

Interpolation data record is used to reserve interpolation potion data. Our servo drive's interpolation command only uses the first data whose subindex is 1.

Index	60C1h
Subindex	0
Object Code	ARRAY
Data Type	INT32
Access	RO
PDO Mapping	YES

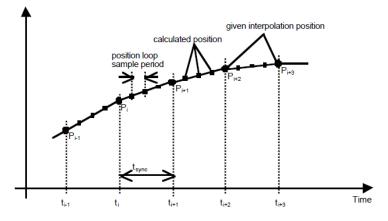
Value Range	INT8
Default Value	2
Comment	number of entries
Index	60C1h
Subindex	1
Object Code	ARRAY
Data Type	INT32
Access	RW
PDO Mapping	YES
Value Range	INT32
Default Value	0
Comment	the first parameter of ip function
Index	60C1h
Subindex	2
Object Code	ARRAY
Data Type	INT32
Access	RW
PDO Mapping	YES
Value Range	INT32
Default Value	0
Comment	The second parameter of ip function

Interpolation time period

Interpolation time period is used to reserve the time data of interpolation position.

60C2h	
RECORD	
Interpolation time period record (0080h)	
Conditional: mandatory if ip, csp, csv or cst mode is supported	
60C2h	
0	

Object Code	RECORD
Data Type	UINT8
Access	C
PDO Mapping	NO
Value Range	02
Default Value	02
Comment	Highest sub-index supported


Index	60C2h
Subindex	01
Object Code	RECORD
Data Type	UINT8
Access	RW
PDO Mapping	YES
Value Range	UINT8
Default Value	01
Comment	Interpolation time period value

Index	60C2h
Subindex	02
Object Code	RECORD
Data Type	INT8
Access	RW
PDO Mapping	YES
Value Range	-128 to +63
Default Value	-3
Comment	Interpolation time index

6.11.6 Functional Description

Interpolation principle of IP mode:

Position

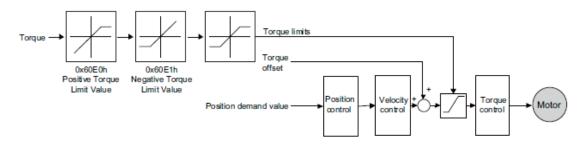
Pi: interpolation position set by the host; tsync: sync period

Explanations

- 1. In our servo drive, there is no buffer for position data so in IP control, all the position data needs to be updated by the host controller. To achieve synchronization, host controllers need to send the updated position at first and then use SYNC signal to make all the servo drive receive the synchronization information. After receiving the synchronization information, servo drive will synchronize its internal clock. Please notice that the sync period should be not bigger than interpolation cycle period in order to keep the updating of interpolation data.
- 2. In IP mode, the host controller should at first set the servo's PDO receiving method into sync mode (use SYNC frame to receive and send synchronization information). Since the SYNC is broad casted, each servo drive will only update PDO data after receiving this signal.
- 3. Before SYNC is sent, host controller should send position data Xi and Controlword to the servo drive.
- 4. When there is data delay, servo drive will use the last sync date to do interpolation.
- 5. After one IP period is ended, if there is no further data updating, interpolation cycle overtime alarm (A 69) will happen. Then servo drive will stop.

Recommended RPDO configuration:

•	When	you	use	only	one	RPDO	
---	------	-----	-----	------	-----	------	--


	Control word subindex: 0h)	(index:	6040h,	32bit (index:60	position C1h,subindex:01h)	reference
When you	use two RPDOs					
	Control (index:6040h.su	bindex:0h) WC		position (:60C1h.subindex:01h)	reference

Configuration process:

- 1. Configure PDO. (RPDO1 is configured as index: 6040h, subindex: 0h, RPDO2 is configured as index 60c1h, subindex: 1h)
- 2. Set interpolation cycle (60C2-01h), in micro second (ms).
- 3. Set PDO as Sync mode (Set the object dictionary (index: 1400h, subindex: 02h) as 1. Set object dictionary (index: 1401h, subindex: 02h) as 1). If sending PDO needs to be in sync mode as well, we need to set object dictionary (index: 1800h, subindex: 02h) as 1 and (index:1801h, subindex:02h) as 1 as well.
- 4. Set the control mode to PI mode (set the object dictionary (index: 6060h, subindex:0h) to 7);
- 5. NMT starts node.

6.12 Torque Limit Function

In CANOPEN bus mode, torque limit function is restricted by 0x60E0 and 0x60E1 as below.

PosTorLimit(0x60E0)

PosTorLimit is the positive torque limit, unit: 0.1% rated torque

Index	60E0h
Name	PosTorLimit
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Value Range	0-3000
Default Value	3000

NegTorLimit(0x60E1)

NegTorLimit is the negative torque limit, unit: 0.1% rated torque

Index	60E1h
Name	NegTorLimit
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Value Range	0-3000
Default Value	3000

6.13 Digital Input /Output

60FE (Physical outputs)

In some cases, some switches (i.e. the origin signal and limit signal) are not sent to the servo drive directly, but sent by the host. You need to use the object 60FE-01h (Physical outputs) to transfer the relevant signals.

Index	60FE h
Name	Digital outputs
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32
Sub-Index	01 _h
Name	Physical outputs
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Default Value	0
Sub-Index	02 _h
Name	Bit mask
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Default Value	0

Bit17	Bit28	Bit29	Bit30	Bit31
reserved	Remote0	Remote1	Remote2	reserved

The bit28-bit30 bits of this object correspond only to the input port of CN1 respectively, and then you need to configure the corresponding function of the input port through Pn511 or invert it through 517.

60FD (Physical outputs)

Sometimes, the host controller may read the object 60FDh (Digital Inputs) to monitor the switching on-off inputs of the drive, which are defined as follows:

Index

60FD h

Name	Digital outputs
Object Code	Variable
Data Type	UINT32
Sub-Index	00 _h
Name	Physical outputs
Object Code	VAR
Data Type	UINT32
Access	RO
PDO Mapping	YES
Default Value	0

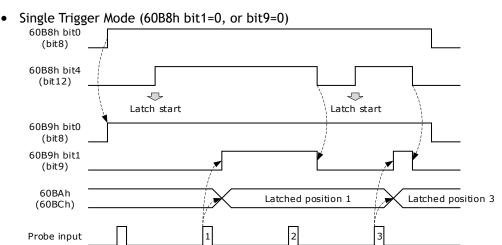
Bit0	Bit1	Bit2	Bit3-15	Bit16	Bit17	Bit18
negative limit switch	positive limit switch	home switch	reserved	CN1_in1	CN1_in2	CN1_in3
Bit19	Bit20	Bit21	Bit22	Bit23	Bit24-31	
CN1_in4	CN1_in5	CN1_in6	CN1_in7	CN1_in8	reserved	

6.14 Functions of TouchProbe

You may use the following trigger events to latch the feedback motor position.

- TouchProbe input 1 (TP1) triggered
- TouchProbe input 2 (TP2) triggered
- Trigger by using C pulse signal

The latch function of two TouchProbes can be used at the same time:


- Latch control object: 60B8h (bit0 to bit7)
- Latch state object: 60B9h (bit0 to bit7)
- The locked position is always stored in the TouchProbe1 position value (60BAh and 60BBh).
- Trigger signal: C pulse signal or EXT1 signal of the encoder

The objects involved in this function are listed in table below:


Index	Sub-index	Name	Visit	Data Type	PDO Mapping	Default
60B8	00	Touch Probe Function	RW	UINT16	Yes	-
60B9	00	Touch Probe Status	RO	UINT16	Yes	-
60BA	00	TouchProbePos1PosValue	RO	INT32	Yes	_
60BB	00	TouchProbeNeg1PosValue	RO	INT32	Yes	_

Index	Sub-index	Name	Visit	Data Type	PDO Mapping	Default
60BC	00	TouchProbePos2PosValue	RO	INT32	Yes	-
60BD	00	TouchProbeNeg2PosValue	RO	INT32	Yes	-

Example of the execution process of Touch Probe:

• Continuous Trigger Mode (60B8h bit1=1, or bit9=1)

60B8h: Touch Probe Function

The object is configured to the Touch Probe Function.

Index	Sub-index	Name	Access	Data Type	Unit	Range	Default
60B8	00	Touch Probe Function	RW	UINT16	-	0 to 0xFFFF	0

Each bit of Touch Probe Function (60B8h) is described as follows:

Bit	Value	Definition
0	0	Probe 1 not enabled
0	1	Probe 1 enabled
1	0	Single trigger, probe 1 is triggered only when the trigger signal is valid for the first time
	1	Continuous trigger, probe 1 is triggered every time the trigger signal is valid
ſ	0	External IO signal, used as probe 1 trigger signal
2	1	C pulse, used as the trigger signal of probe 1
3	0	Reserved
4	0	Not enable the rising edge latch position of probe 1
4	1	Enable latch position on rising edge of probe 1
5	0	Not enable the latch position of probe 1 falling edge
	1	Enable the latch position of probe 1 falling edge
6, 7	0	Reserved
0	0	Probe 2 not enabled
8	1	Probe 2 enabled
9	0	Single trigger, probe 2 is triggered only when the trigger signal is valid for the first time
	1	Continuous trigger, probe 2 is triggered every time the trigger signal is valid
10	0	External IO signal, used as probe 1 trigger signal
10	1	C pulse, used as the trigger signal of probe 1
11	0	Reserved
17	0	Not enable the rising edge latch position of probe 2
12	1	Enable latch position on rising edge of probe 2
12	0	Not enable the latch position of probe 2 falling edge
13	1	Enable the latch position of probe 2 falling edge
14, 15	0	Reserved

60B9h: Touch Probe Status

Touch Probe Status (60B9h) indicates the touch probe status.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60B9	00	Touch Probe Status	RO	UINT16	1	I	-

Each bit of Touch Probe Function (60B9h) is described as follows:

Bit	Value	Definition					
0	0	Probe 1 not enabled					
0	1	Probe 1 enabled					
1	0	Probe 1 rising edge position latch has not been executed					
1	1	Probe 1 rising edge position latch has been executed					
2	0	Probe 1 falling edge position latch has not been executed					
2	1	Probe 1 falling edge position latch has been executed					
3 to 5	0	eserved					
6,7	0	In continuous mode, bit6 and bit7 record the times that the function of probe 1 has been executed; the value is counted cyclically between 0 and 3.					
0	0	Probe 2 not enabled					
8	1	Probe 2 enabled					
	0	Probe 2 rising edge position latch has not been executed					
9	1	Probe 2 rising edge position latch has been executed					
10	0	Probe 2 falling edge position latch has not been executed					
10	1	Probe 2 falling edge position latch has been executed					
11 to 13	0	Reserved					
14, 15	0	In continuous mode, bit14 and bit15 record the times that the function of probe 2 has been executed; the value is counted cyclically between 0 and 3.					

60BAh: TouchProbePos1PosValue

TouchProbePos1PosValue (60Bah) indicates the latch location when the Touch Probe1 trigger condition occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BA	00	TouchProbePos1PosValue	RO	INT32	Ι	_	-

60BBh: TouchProbeNeg1PosValue

TouchProbeNeg1PosValue (60BBh) indicates the latch location when the trigger condition for Touch Probe1 falling edge occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BB	00	TouchProbeNeg1PosValue	RO	INT32	-	-	-

60BCh: TouchProbePos2PosValue

TouchProbePos2PosValue (60BCh) indicates the latch location when the Touch Probe2 trigger condition occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BC	00	TouchProbePos2PosValue	RO	INT32	Ι	_	-

60BDh: TouchProbeNeg2PosValue

TouchProbeNeg2PosValue (60BDh) indicates the latch location when the trigger condition for Touch Probe2 falling edge occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BD	00	TouchProbeNeg2PosValue	RO	INT32	-	-	-

Pn331 and Pn332

You can allocate the TouchProbe functions by Pn331, and set Touch Probe Digital Input Filtering Time by Pn332. The Related Parameters are as following:

Para	Name	Range	Unit	Default	When Enabled	
Pn331.0	CN1-18 Signal Allocation	0 to 2	-	0		
Pn331.1	CN1-19 Signal Allocation	0 to 2	-	1	After restart	
Pn332	Touch probe Input Signal Filtering Time	0 to 1000	10 ns	0	Immediately	

The signal allocation instructions for Touch probe 1 and Touch probe 2 are listed in table below.

Parameter	Setting	Meaning	When Enabled	
0 Allocate Touch probe 1 signal to pin CN1-		Allocate Touch probe 1 signal to pin CN1-18		
Pn331.0	1	Allocate Touch probe 2 signal to pin CN1-18	7	
	2	Not allocated	After restart	
	0	Allocate Touch probe 1 signal to pin CN1-19	AILEI TESLATI	
Pn331.1	1	Allocate Touch probe 1 signal to pin CN1-19		
	2	Not allocated		

<u>Pn333</u>

You can select whether to invert the Touch Probe 1 and Touch Probe 2 signals through the parameter Pn333. In general, it needs to be set according to the actual input signal level.

Parameter	Setting	Meaning	When Enabled
Pn333.0	0	Do not invert CN-18 signal (take effective when low level)	
	1	Invert CN-18 signal (take effective when high level)	After restart
0 Pn333.1		Do not invert CN-19 signal (take effective when low level)	Alterrestart
	1	Invert CN-19 signal (take effective when high level)	

6.15 Soft Limit Function

Software Position Limit defines the maximum and minimum absolute position commands. Every target position is checked against these limits. The limit positions are specified in user-defined position reference units, the same as for target positions, and are always relative to the machine home position. Before comparing with Target position, you need to use Home Offset to correct the position limit.

- corrected min position limit = min position limit home offset
- corrected max position limit = max position limit home offset

The software position limits are enabled at the following conditions:

- When homing is completed
- corrected min position limit < corrected max position limit

When the servo is not homed, if min position limit<max position limit, the servo takes max position limit and min position limit as the position limit; otherwise, the position command is not restricted by the position limit.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
	00 Software position		RO	UINT8	-	0 ~ 65535	0
607D	01	Min position limit	RW	INT32	_	- 2147483648 ~ 2147483647	-
	02	Max position limit	RW	INT32	_	- 2147483648 ~ 2147483647	_

Chapter 7 Trial Operation

7.1 Preparations for Trial Operation

The procedure for trial operation is given below.

Step	Meaning	Reference
1	Installation Install the Motor and Drive according to the installation conditions. First, operation is checked with no load. Do not connect the Motor to the machine.	Chapter 2
2	Wiring and Connections Wire and connect the Drive. First, Motor operation is checked without a load. Do not connect the X4 connector on the Drive.	0
3	Confirmations before Trial Operation	-
4	Power ON	-
5	Resetting the Absolute Encoder If an absolute encoder is used, it is necessary to reset the absolute encoder.	5.6

7.2 Inspections and Confirmations

To ensure safe and correct trial operation, check the following items before you start trial operation.

- Make sure that the Drive and Motor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the Drive.
- Make sure that there are no loose parts in the Motor mounting.
- If you are using a Motor with an Oil Seal, make sure that the oil seal is not damaged. Also make sure that oil has been applied.
- If you are performing trial operation on a Motor that has been stored for a long period of time, make sure that all Motor inspection and maintenance procedures have been completed.
- If you are using a Motor with a Holding Brake, make sure that the brake is released in advance. To release the brake, you must apply the specified voltage of 24 VDC to the brake, for details see the section 3.6.4 Holding Brake Wiring.

7.3 Motor Operation without a Load

You use jogging for trial operation of the Motor without a load.

Jogging is used to check the operation of the Motor without connecting the Drive to the host controller. The Motor is moved at the preset jogging speed.

- During jogging, the overtravel function is disabled.
- Consider the range of motion of your machine when you jog the Motor.

7.3.1 Preparations

Always check the following before you execute jogging.

- The main circuit power supply must be ON.
- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.
- The jogging speed must be set considering the operating range of the machine.

7.3.2 Applicable Tools

- Use the Panel Operator of the Drive
- Use the Motion Perfect V5.3 or above (<u>Recommended</u>)

7.3.3 JOG Operation

Use the Panel Operator of the Drive

Before performing the JOG operation by using the Panel Operator, you shall check and set the relevant parameters properly.

For the method of checking and setting parameters by using the Panel Operator, refers to the section 4.1.4 Parameter Setting Mode

Functions can be selected or adjusted by setting parameters. There are two types of parameters.

- Function Parameters: the functions allocated to each digit of the Panel Operator can be selected.
- Adjustment Parameters: a parameter is set to a value within the specified range of the parameter.

For a description of the parameter settings, please refer to the section Chapter 1

Parameters.

Function Parameters Setting

The example below shows how to change parameter Pn003 (Application Function Selections 3) from **0000** to **1032.**

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn003.

Step 3 Press [\blacktriangleleft] key to display the current value of Pn003.

Step 4 Press and hold [] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Decimal point is flashing

Step 5 Press $[\blacktriangle]$ key twice, changing the value of the 5th digit from 0 to 2.

Step 6 Press [◀] key once, moving the flashing decimal point to the 4th digit.

Step 7 Press $[\blacktriangle]$ key three times, changing the value of the 4th digit from 0 to 3.

Step 8 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 2nd digit.

Step 9 Press $[\blacktriangle]$ key once, changing the value of the 2nd digit from 0 to 1.

Step 10 Press and hold [] key for 1 second or more to return to the display of the Pn003 parameter value or press the [M] key to return to the display of the Pn003.

----End

 \square

NOTE

After completing the function parameters setting, restart the Drive to take effect

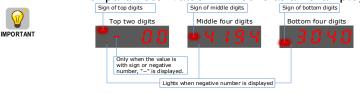
Adjustment Parameters Setting

The example below shows how to change parameter Pn102 (Speed Loop Gain) from 100 to 85.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn102.

Step 3 Press [\blacktriangleleft] key to display the current value of Pn102.


Step 4 Press [▲] key or [▼] key to change the value to 00085. Press and hold [▲] key or [▼] key to jump the setting value quickly.

Step 5 Press [◀] key or [M] key to return to the display of Pn102.

----End

Panel Operator can only display 5 digits. The value of some adjustment parameters will be 6 digits or more. The display of the parameter values is as follows (take the display of parameter value -41943040 as an example).

The example below shows how to change parameter Pn504 (Deviation Counter Overflow Alarm) from **41943040** to **42943240**.

Step 6 Press [M] key several times to select the Parameter Setting Mode.

Step 7 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn504.

Step 8 Press [\blacktriangleleft] key to display bottom four digits of the current value of Pn504.

Step 9 Press and hold [] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 10 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 3rd digit.

Step 11 Press $[\blacktriangle]$ key twice, changing the value of the 3rd digit from 0 to 2.

Step 12 Press [◀] key four times, moving the flashing decimal point to the 3rd of middle four digits.

Step 13 Press [\blacktriangle] key once, changing the value of the 3rd digit from 1 to 2.

Step 14 Press and hold [◀] key for 1 second or more to return to the display of the Pn504 parameter value or 8press the [M] key to return to the display of the Pn504.

----End

7.3.4 Monitor Mode

The Monitor Mode can be used for monitoring the reference values, I/O signal status, and Drive internal status.

The Monitor Mode can be selected during Motor operation.

Select Monitor Mode

The example below shows how to display, the contents of monitor number Un003 (when the Motor rotates at 100).

Step 1 Press [M] key several times to select the Monitor Mode.

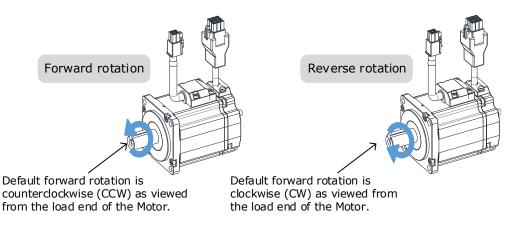
Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the monitor number Un003.

Step 3 Press [\blacktriangleleft] key to display the data of Un003.

Step 4 Press $[\blacktriangleleft]$ key to return to the display of Un003.

Following the below steps to jog the Motor.

Step 5 Press [M] key several times to select the Utility Function Mode.


Step 6 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the function number Fn002.

Step 7 Press [4] key, and Panel Operator displays as below.

- Step 8 Press [M] key to Servo ON (supply power to Motor). Press [M] key again to Servo OFF (not supply power to Motor).
- Step 9 Press [▲] key or [▼] key to run the Motor in forward or reverse direction. Press and hold [▲] key or [▼] key to run the Motor continuously.

The rotation direction of the Motor depends on the setting of Pn001.0 (CCW, CW). The figure above shows the default setting.

Step 10 Press the $[\blacktriangleleft]$ key to return to the display of the Fn002.

----End

Use the Motion Perfect

The Motor will operate only while a button is clicked in the Motion Perfect.

734:4098:auto:1:ASCII/0 ×							.
← → =	Change Tuning M Setup tuning mode		1	Inertia Detection	:	÷.	Parameter Auto-Tuning Parameters Auto Tuning available only in manual tuning mode
🖃 🧾 Motor							mode
🐼 Basic Setup	Tuning-less Mode						
🚔 Tuning			sonance during motor ope	ration and selects an appropriate filter to redu	uce oscillation in the m	iotor	
💦 Scope		In Tuning-less me	ode the drive performs au	to-tuning to obtain a stable response regardle	ess of the type of mach	hine or cl	nanges in the load.
💭 Alarms	Speed Feedforward						
👷 Monitor	Speed Feedforward = -214748	33648					→
Parameters	0 Speed feedforward can impro	we position response and r	educe position following e	rror. Increasing the feedforward term will tend	d to reduce error during	neriods	of constant speed but may cause overshoot when the
🔘 Motor Data	speed reference changes.		e e e e e e e e e e e e e e e e e e e	in an		, , , , , , , , , , , , , , , , , , , ,	
	Har						
	Move Jog PJog						부 🖛
		Volue Default Demos	Unite				
	Name Jogging Speed Soft Start Acceleration Time Soft Start Deceleration Time	0 0~100					
							More info

Enter the Tuning page in the drive commissioning section of Motion Perfect, Then select Jog enable to engage the drive and motor. You can then jog the drive by pressing and holding the arrow buttons next to the Jog enable button.

The motor will jog for as long as you hold the arrow buttons. It will more clockwise when using the right button and anticlockwise while using the left.

7.4 Motor Operation with a Load

7.4.1 Precautions

Operating mistakes that occur after the Motor is connected to the machine may not only damage the machine, but they may also cause accidents resulting in personal injury.

If you disabled the overtravel function for trial operation of the Motor without a load, enable the overtravel function (P-OT and N-OT signal) before you preform trial operation with the Motor connected to the machine in order to provide protection.

If you will use a holding brake, observe the following precautions during trial operation.

• Before you check the operation of the brake, implement measures to prevent vibration from being caused by the machine falling due to gravity or an external force.

• First check the Motor operation and brake operation with the Motor uncoupled from the machine. If no problems are found, connect the Motor to the machine and perform trial operation again.

Control the operation of the brake with the /BK (Brake) signal output from the Drive.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the Drive to fail, damage the Drive, damage the equipment, or cause an accident resulting in death or injury.

Observe the precautions and instructions for wiring and trial operation precisely as described in this manual.

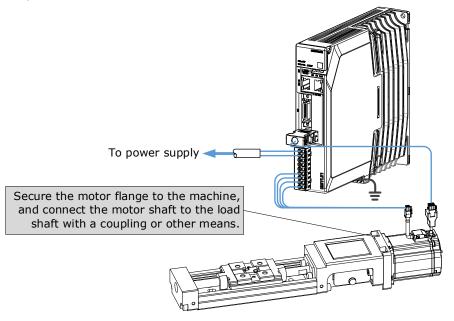
7.4.2 Preparations

Always confirm the following before you perform the trial operation procedure for both the machine and Motor.

- Make sure that the Drive is connected correctly to both the host controller and the peripheral devices.
- Overtravel wiring
- Brake wiring
- Allocation of the /BK (Brake) signal to a pin on the I/O signal connector (X4)
- Emergency stop circuit wiring
- Host controller wiring

7.4.3 Operation Procedure

- Step 1 Enable the overtravel signals. Refers to the section 5.3 Overtravel Limi.
- Step 2 Make the settings for the protective functions, such as the safety function, overtravel, and the brake.
 - For details on overtravel settings, refers to the section 5.3 Overtravel Limi.
 - For details on holding brake settings, refers to the section 0


NOTE	 This setting is a percentage of the rated torque. The default setting is 300%. This setting is large enough to allow you to operate the Motor at the maximum torque. However, the maximum stop torque that you can actually use is the maximum torque of the Motor. 		

• Holding Brake.

Step 3 Turn OFF the power supplies to the Drive.

The control power supply and main circuit power supply will turn OFF.

Step 4 Couple the Motor to the machine.

- Step 5 Turn ON the power supplies to the machine and host controller and turn ON the control power supply and main circuit power supply to the Drive.
- Step 6 Check the protective functions, such overtravel and the brake, to confirm that they operate correctly.
- Step 7 If necessary, adjust the servo gain to improve the Motor response characteristics.
 The Motor and machine may not be broken in completely for the trial operation. Therefore, let the system run for a sufficient amount of time to ensure that it is properly broken in.
- Step 8 For future maintenance, save the parameter settings with one of the following methods.
 - Use Motion Perfect to save the parameters as a file.
 - Record the settings manually.

This concludes the procedure for trial operation with both the machine and Motor.

----End

7.5 Program Jogging

You can use program jogging to perform continuous operation with a preset operation pattern, travel distance, movement speed, acceleration/deceleration time, waiting time, and number of movements.

You can use this operation when you set up the system in the same way as for normal jogging to move the Motor without connecting it to the host controller in order to check Motor operation and execute simple positioning operations.

7.5.1 **Preparations**

Always check the following before you execute program jogging.

- The parameters must not be written prohibited.
- The main circuit power supply must be ON.
- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.

- The range of machine motion and the safe movement speed of your machine must be considered when you set the travel distance and movement speed.
- There must be no overtravel.

7.5.2 Operation Description

Program jogging operation consists of two operation patterns (PJOG0 and PJOG1), you can set their relevant parameters respectively. Figure 7-1 shows an example of position-speed timing diagram in PJOG operation.

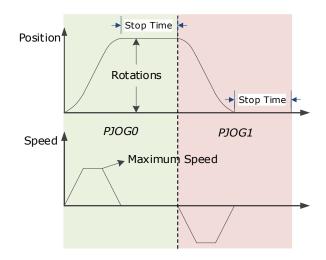


Figure 7-1 Position-speed timing diagram

The Drive will operator the Motor repeatedly according to the parameter settings of the two operation patterns until you stop the program jogging operation manually.

You can set the parameters Pn164 and Pn168 to a negative value for reversing the Motor, so that there are four ways of the operation in the program jogging, as is shown in Figure 7-2.

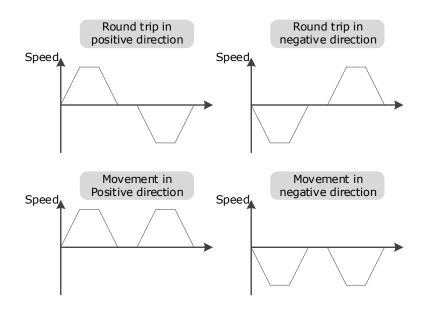


Figure 7-2 Operation in the program jogging

You shall set the Rotations (Pn164 and Pn168) and Max Speed (Pn165 and Pn169) to a proper value. If the Rotations is set too small or the Max Speed is set too large, it is possible that the maximum speed set cannot be reached. In this case, it is necessary to increase the Rotations or decrease the Max Speed.

7.5.3 Relevant Parameters

Parameter	Name	Range	Unit	Default	When Enabled
Pn164	Turns for PJOG0	-50 to 50	rotation	5	Immediately
Pn165	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediately
Pn166	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediately
Pn167	Stop Time for PJOG0	100 to 10000	ms	1000	Immediately
Pn168	Turns for PJOG1	-50 to 50	rotation	5	Immediately
Pn169	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediately
Pn170	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediately
Pn171	Stop Time for PJOG1	100 to 10000	ms	1000	Immediately

7.5.4 Applicable Tools

- Use the Panel Operator of the Drive
- Use the Motion Perfect V5.3 or above (Recommended)

7.5.5 **Operation Procedure**

Use the Panel Operator of the Drive

Before performing the Program Jogging (PJOG) operation by using the Panel Operator, you shall check and set the following parameters properly.

Check and set the parameters Pn164 to Pn171 as proper values in advance, and ensure the movable parts have sufficient travel in the forward and reverse directions.

For the method of checking and setting parameters by using the Panel Operator, refers to the section 4.1.4 Parameter Setting Mode

Functions can be selected or adjusted by setting parameters. There are two types of parameters.

- Function Parameters: the functions allocated to each digit of the Panel Operator can be selected.
- Adjustment Parameters: a parameter is set to a value within the specified range of the parameter.

For a description of the parameter settings, please refer to the section Chapter 1

Parameters.

Function Parameters Setting

The example below shows how to change parameter Pn003 (Application Function Selections 3) from **0000** to **1032.**

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn003.

Step 3 Press [\blacktriangleleft] key to display the current value of Pn003.

Step 4 Press and hold [] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Decimal point is flashing

Step 5 Press $[\blacktriangle]$ key twice, changing the value of the 5th digit from 0 to 2.

Step 6 Press [◀] key once, moving the flashing decimal point to the 4th digit.

Step 7 Press $[\blacktriangle]$ key three times, changing the value of the 4th digit from 0 to 3.

Step 8 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 2nd digit.

Step 9 Press $[\blacktriangle]$ key once, changing the value of the 2nd digit from 0 to 1.

Step 10 Press and hold [] key for 1 second or more to return to the display of the Pn003 parameter value or press the [M] key to return to the display of the Pn003.

----End

 \square

NOTE

After completing the function parameters setting, restart the Drive to take effect

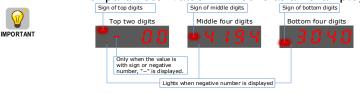
Adjustment Parameters Setting

The example below shows how to change parameter Pn102 (Speed Loop Gain) from 100 to 85.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn102.

Step 3 Press [\blacktriangleleft] key to display the current value of Pn102.


Step 4 Press [▲] key or [▼] key to change the value to 00085. Press and hold [▲] key or [▼] key to jump the setting value quickly.

Step 5 Press [◀] key or [M] key to return to the display of Pn102.

----End

Panel Operator can only display 5 digits. The value of some adjustment parameters will be 6 digits or more. The display of the parameter values is as follows (take the display of parameter value -41943040 as an example).

The example below shows how to change parameter Pn504 (Deviation Counter Overflow Alarm) from **41943040** to **42943240**.

Step 6 Press [M] key several times to select the Parameter Setting Mode.

Step 7 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the parameter Pn504.

Step 8 Press [\blacktriangleleft] key to display bottom four digits of the current value of Pn504.

Step 9 Press and hold [4] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 10 Press [\blacktriangleleft] key twice, moving the flashing decimal point to the 3rd digit.

Step 11 Press $[\blacktriangle]$ key twice, changing the value of the 3rd digit from 0 to 2.

Step 12 Press [◀] key four times, moving the flashing decimal point to the 3rd of middle four digits.

Step 13 Press [\blacktriangle] key once, changing the value of the 3rd digit from 1 to 2.

Step 14 Press and hold [◀] key for 1 second or more to return to the display of the Pn504 parameter value or 8press the [M] key to return to the display of the Pn504.

----End

7.5.6 Monitor Mode

The Monitor Mode can be used for monitoring the reference values, I/O signal status, and Drive internal status.

The Monitor Mode can be selected during Motor operation.

Select Monitor Mode

The example below shows how to display, the contents of monitor number Un003 (when the Motor rotates at 100).

Step 1 Press [M] key several times to select the Monitor Mode.

Step 2 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the monitor number Un003.

Step 3 Press $[\blacktriangleleft]$ key to display the data of Un003.

Step 4 Press $[\blacktriangleleft]$ key to return to the display of Un003.

The following are the steps to run the Motor between the two programmed operation patterns (PJOG0 and PJOG1).

Step 5 Press [M] key several times to select the Utility Function Mode.

Step 6 Press $[\blacktriangle]$ key or $[\triangledown]$ key to select the function number Fn018.

Step 7 Press [◀] key, and Panel Operator displays as below.

Step 8 Press [M] key to execute this operation, and Panel Operator displays as below.

run

Step 9 Press [\blacktriangleleft] key to return to the display of the Fn018.

----End

Chapter 8 Tuning

8.1 Overview

8.1.1 Basic Conception

Tuning is the process of satisfying the servo performance by adjusting the parameters involved in the control law.

Tuning Flow

The process of tuning is usually an iterative process, and Figure 8-1 shows the general flow.

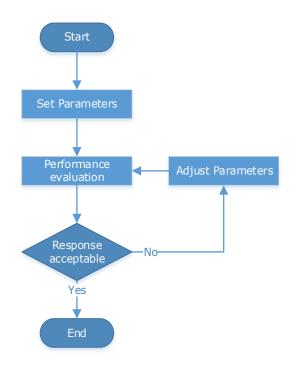


Figure 8-1 General flow

Parameter Classification

There are two types of parameters in the tuning.

- Function Parameters: refers to some application function selections or switches that may improve Servo performance.
- Adjustment Parameters: increasing or decreasing these parameters may improve Servo performance.

Servo Performance

In general, the indicators used to evaluate Servo performance are bandwidth, response time, overshoot, steady state error, anti-load disturbance, speed ripple fluctuation, torque ripple, and so on. Error! R eference source not found. shows the comparison of the graphics before and after tuning in the example indicators.

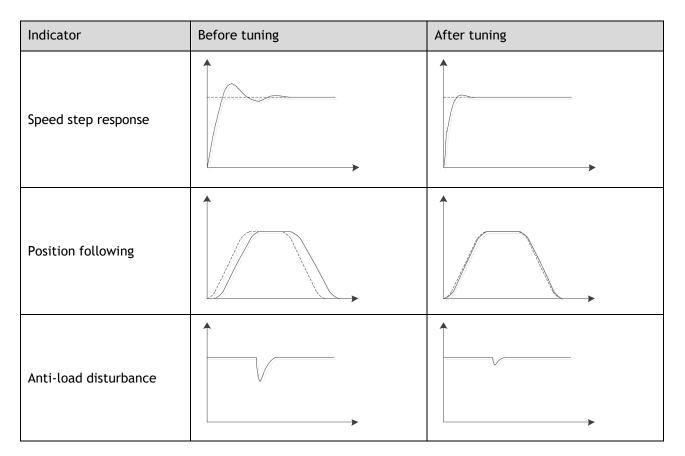
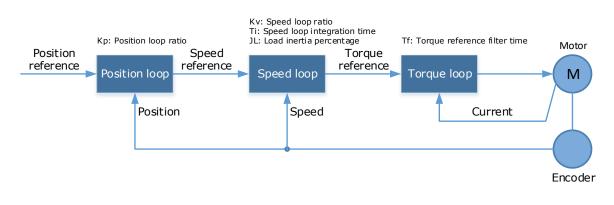



Table 8-1 Comparison of the graphics before and after tuning

8.1.2 Control Block Diagram

It is necessary to learn the Servo control principle and Figure 8-2 shows the Servo control block diagram. The position loop, the speed loop and the torque loop are cascade structures, corresponding to the position control mode, the speed control mode and the torque control mode respectively.

Only the basic tuning parameters during the tuning are shown in the figure

8.1.3 Tuning Process

The Drive provides a variety of tuning methods, you can adjust the device according to the process shown in **Error! Reference source not found.**, in order to obtain the desired Servo performance.

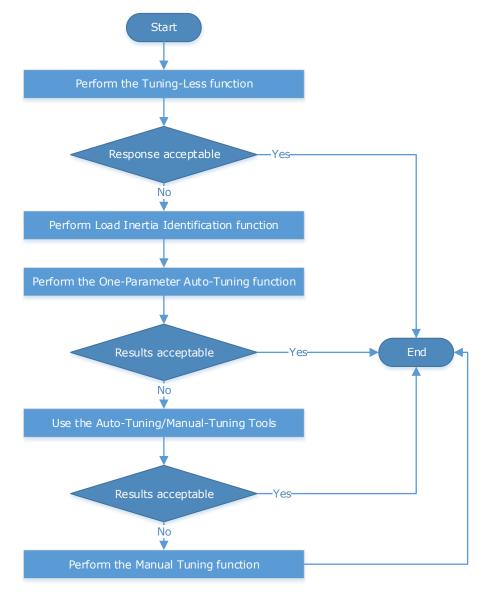
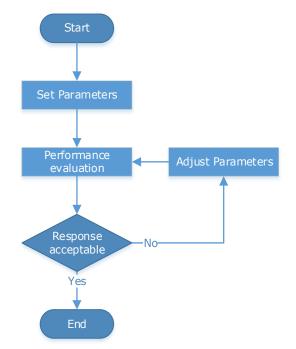


Figure 8-3 Tuning Process

It is necessary to perform the tuning operation again if the Motor had been disassembled or the load device had been replaced.

8.1.4 Precautions Before Tuning

Before performing the tuning operation, make sure the limit function is available.



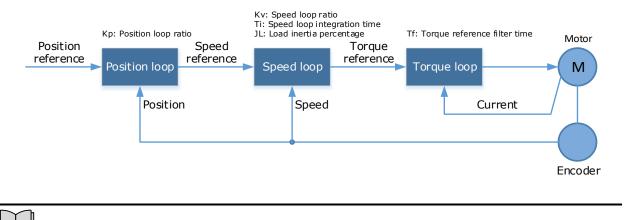
- Before performing the tuning operation, make sure that an emergency stop can be performed at any time. Before performing the tuning operation, you shall set the torque limit according to actual
- condition. Never touch the moving parts during the tuning operation.

8.2 Tuning Modes

Tuning is the process of satisfying the servo performance by adjusting the parameters involved in the control law.

The process of tuning is usually an iterative process; the figure below shows the general flow

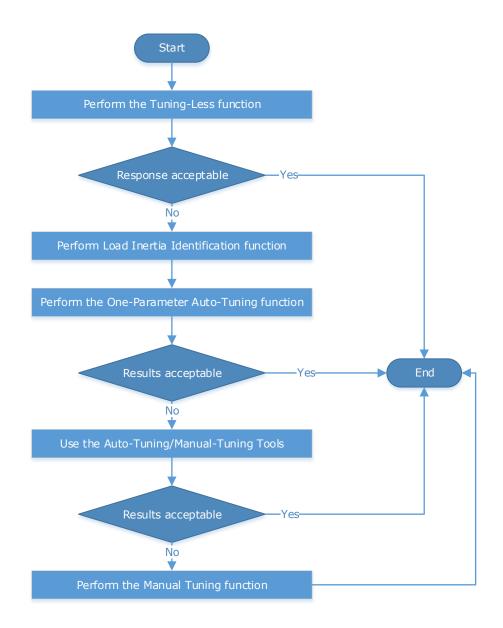
There are various indicators used to evaluate servo performance including bandwidth, response time, overshoot, steady state error, anti-load disturbance, speed ripple fluctuation, torque ripple, etc. The importance of these will depending on the application.


The table below shows examples of speed vs time graphs showing the comparison of before and after tuning.

Indicator	Before tuning	After tuning		
Speed step response				
Position following				

Indicator	Before tuning	After tuning
Anti-load disturbance		

8.3 Tuning Process


When tuning a servo drive is if helpful to understand the servo control principle used. The figure below shows the servo control block diagram. The position loop, the speed loop and the torque loop are cascaded structures, corresponding to the position control mode, the speed control mode and the torque control mode respectively.

Only the basic tuning parameters during the tuning are shown in the figure

Generally, for tuning the drive follow the process below.

It will be necessary to perform the tuning operation again if the motor has been disassembled or the load device had been replaced.

Before performing the tuning operation, make sure the limit function is available. Before performing the tuning operation, make sure that an emergency stop can be performed at any time.

Before performing the tuning operation, you shall set the torque limit according to actual condition.

Never touch the moving parts during the tuning operation.

8.4 Tuning Modes

The drive supports 3 different tuning modes and different features are available in each mode.

Tuning-less: the drive performs auto-tuning to obtain a stable response regardless of the type of machine or changes in the load.

One-Parameter Auto-Tuning: similar to the tuning-less function but requires an inertia measurement of the load and uses a rigidity parameter to control the system bandwidth.

Manual Tuning: all gain terms are manually adjusted

The tuning mode can be changed from the Tuning page in the drive commissioning screens. Click on the 'Change Tuning Mode' button.

Change Tuning Mode

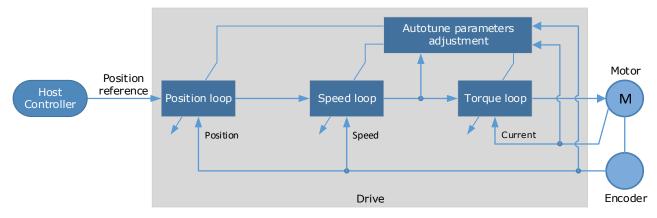
Setup tuning mode on drive

This will launch a wizard to guide the change of tuning mode.

Alternatively, the tuning mode can be changed by directly writing to parameter Pn100.0.

Parameter	Setting	Meaning
1 [Default] Tuning-less		Tuning-less
	2	Reserved
Pn100.0	3	One-Parameter Auto-Tuning
	4	Reserved
	5	Manual tuning

Once the tuning mode has been changed the drive will require a re-start for the new selection to apply.


The table below show a summary functions available in each mode:

Function	Tuning-less	One-Parameter	Manual
Feedforward (Velocity and Torque)	Yes	Yes	Yes
Friction Compensation	Yes	Yes	Yes
Feedback Speed Selection	No	Yes	Yes
Load Torque Compensation	No	Yes	Yes
Damping Selection	No	Yes	No
Automatic Vibration Suppression	Yes	Yes	Yes
Intermediate Frequency Vibration Suppression	Yes	Yes	Yes
Notch Filter	Yes	Yes	Yes
Load Oscillation Suppression	No	No	Yes
P / PI Switching	No	Yes	Yes
Gain Switching	No	No	Yes
Model Following Control	No	No	Yes

8.4.1 Tuningless

In Tuning-less mode the drive performs auto-tuning to obtain a stable response regardless of the type of machine or changes in the load. Autotuning is started when the servo is turned on.

The tuning-less function uses an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current). The figure below shows the block diagram in tuning-less.

When using the tuning-less function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning
Load Inertia Percentage	Auto-tuning

NOTE

The gain terms used by the tuning-less model are not shown in the drive parameters

Use Case

Applicable for applications where the motor / load inertia mismatch is no more than 30 times.

Applicable for applications of any motor speed.

Parameters

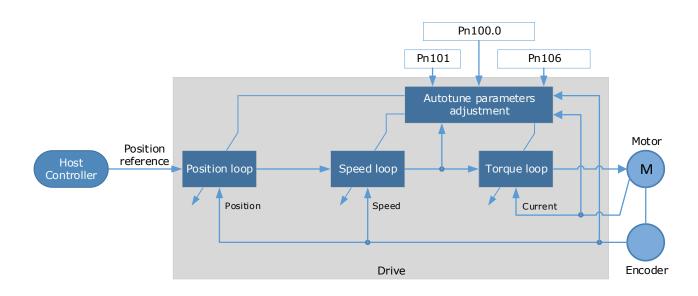
Parameter	Setting	Description
Pn100.0	1 [Default]	Set the Tuning Mode as Tuning-less.

Changing the tuning mode will require the drive to be restarted.

Restrictions

The following table shows a summary of functions available in tuning-less mode.

Function	Tuning-less
Feedforward (Velocity and Torque)	Yes
Friction Compensation	Yes
Automatic Vibration Suppression	Yes


Function	Tuning-less
Intermediate Frequency Vibration Suppression	Yes
Notch Filter	Yes

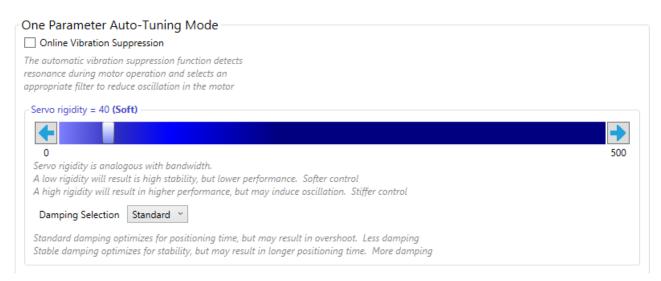
8.4.2 One-Parameter Auto Tuning

This tuning function is similar to the tuning-less function, using an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current).

One-Parameter Auto Tuning may offer some advantages over Tuning-less mode due to:

- Tuning is based on a proper load inertia percentage so tends to offer improved performance.
- The user selection of rigidity means that the tuning mode can be applied to more operating conditions.

One-Parameter Auto Tuning requires an inertia measurement of the load. The drive can measure the load inertia using the Inertia Detection tool, which can be launched from the Tuning page in the drive commissioning screens

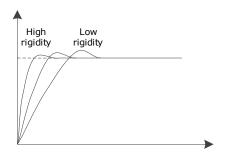


This will launch a wizard to guide the process of inertia detection.

Alternatively, the inertia can be entered by directly writing to parameter Pn106.

	ParameterNamePn106Load Inertia Percentage		Description
			Ratio of Motor inertia to load inertia

The stiffness of the control is selected by a rigidity parameter. This can be adjusted by a slider on the Tuning page in the drive commissioning screens.



Alternatively, the rigidity can be entered by directly writing to parameter Pn101.

Parameter	Name	Description
Pn101	Servo Rigidity	Determines the response characteristic of the position loop or speed loop.

A lower number corresponds to a lower rigidity, less stiff. This will provide a slower response.

A higher number corresponds to a higher rigidity, more stiff. This will provide a faster response but taken too far may result in oscillation.

When using the One-Parameter Auto-Tuning function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning

The gain terms used by the one-parameter model are not shown in the drive parameters

Use Case

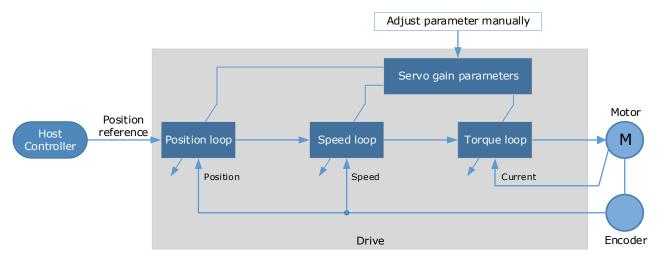
Applicable for applications where the motor / load inertia mismatch is no more than 50 times.

Applicable for applications of any motor speed.

Parameters

Parameter	Setting	Meaning	
Pn100.0	3	Set the Tuning Mode as One-Parameter Auto-Tuning.	
Pn100.3	0 [Default]	Set the damping method in One-Parameter Auto-Tuning as Standard.	
PI1100.5	1	Set the damping method in One-Parameter Auto-Tuning as Stable.	
Pn101	_	Servo Rigidity (setting depends on application)	
Pn106	_	Load Inertia Percentage (setting depends on application)	

Changing the tuning mode will require the drive to be restarted.


Restrictions

The following table shows a summary of functions available in one-parameter auto-tuning mode.

Function	One-Parameter
Feedforward (Velocity and Torque)	Yes
Friction Compensation	Yes
Feedback Speed Selection	Yes
Load Torque Compensation	Yes
Damping Selection	Yes
Automatic Vibration Suppression	Yes
Intermediate Frequency Vibration Suppression	Yes
Notch Filter	Yes
P / PI Switching	Yes

8.4.3 Manual Tuning

In the Manual Tuning, the gain parameters are manually adjusted without using the autotune parameter adjustment module, until the desired performance is achieved.

It is necessary to adjust the three-loop control parameters of the Servo from the inside out, that is, the adjustment sequence is $\boxed{\text{Torque loop}} \rightarrow \boxed{\text{Speed loop}} \rightarrow \boxed{\text{Position loop}}$. In order to maintain stability, the bandwidth setting should be the largest in the torque loop, then the speed loop, and the position loop should be smallest.

The following parameters need to be adjusted in each loop when performing Manual Tuning.

Torque loop (Torque Control Mode)

• Torque Reference Filter Time (Tf):

The torque reference filter applies to the torque reference to remove the high frequency components, which can effectively reduce the torque ripple of the motor output, eliminate signal noise and reduce the temperature rise of the motor.

The larger the Torque Reference Filter Time, the better the filtering effect on the torque reference. However, the greater the phase lag, and the slower the torque response. Therefore, the smallest acceptable value should be set to obtain a larger torque loop bandwidth in the actual tuning.

Speed loop (Speed Control Mode)

- Relevant parameter in torque loop (Tf)
- Load Inertia Percentage (JL)

Properly setting the Load Inertia Percentage is a prerequisite for the tuning to obtain the best performance. This can be calculated manually or measured using the Inertia Detection tool which is accessible from the Tuning page in the drive commissioning screens.

• Speed Loop Gain (Kv), Speed Loop Integral Time (Ti)

The speed loop is controlled using a Proportional-Integral Controller that contains Speed Loop Gain and Speed Loop Integral Time. Both determine the speed loop bandwidth and anti-disturbance performance of the Servo.

In general, increasing the setting of the Speed Loop Gain will increase the speed loop bandwidth, and the anti-load disturbance performance will be better. Decreasing the setting of the Speed Loop Integral Time will strengthen the integral action, the speed loop bandwidth will be increased, and the anti-load disturbance performance will be better. In addition, the integral action may reduce the steady-state error to zero.

The table below lists several commonly used adjustment methods based on the characteristics of the speed step response.

Response Curve	Description	Adjustment method
	Speed loop bandwidth is high	Properly decrease the Speed Loop Gain or increase the Speed Loop Integral Time.
	Speed loop damping ratio is low	Properly increase the Speed Loop Integral Time.
	Steady-state error is existed	Properly decrease the Speed Loop Integral Time.
	Speed loop bandwidth is low	Properly increase the Speed Loop Gain or decrease the Speed Loop Integral Time.

It is recommended to increase the Speed Loop Gain and decrease the Speed Loop Integral Time to obtain a larger speed loop bandwidth.

Position loop (Position Control Mode)

- Relevant parameters in speed loop (Kv, Ti, Tf, and JL)
- Position Loop Gain (Kp)

The position loop is controlled using a Proportional Controller that only contains the Position Loop Gain. This parameter determines the position loop bandwidth. Increasing the Position Loop Gain will increase the position loop bandwidth, and the anti-load disturbance performance will be better. If the Position Loop Gain is too high this will cause overshooting and vibration.

It is recommended to set the Position Loop Gain to a quarter of the Speed Loop Gain, and make appropriate adjustments based on this.

Access to all control law parameters is available from the Tuning page or the Parameter page in the drive commissioning screens.

Use Case

Applicable for applications where the motor / load inertia mismatch is no more than 50 times.

Applicable for applications of any motor speed.

Parameters

The parameters for manual tuning are:

Block	Parameter	Name
Position Control	Pn104	Position Loop Gain
Position Control	Pn109	Second Position Loop Gain
Speed Feedforward	Pn112	Speed Feedforward
Speed Feedforward	Pn113	Speed Feedforward Filter Time
Speed Control	Pn102	Speed Loop Gain
Speed Control	Pn107	Second Speed Loop Gain
Speed Control	Pn103	Speed Loop Integral Time
Speed Control	Pn108	Second Speed Loop Integral Time
Speed Control	Pn106	Load Inertia Percentage
Torque Feedforward	Pn114	Torque Feedforward
Torque Feedforward	Pn115	Torque Feedforward Filter Time
Anti-resonance Filter	Pn173	Frequency of Vibration Suppression Filter
Anti-resonance Filter	Pn175	Vibration Suppression
Speed Filter	Pn135	Encoder Speed Filter Time
Notch Filter	Pn181	Frequency of Notch Filter 1
Notch Filter	Pn182	Depth of Notch Filter 1
Notch Filter	Pn183	Width of Notch Filter 1
Notch Filter	Pn184	Frequency of Notch Filter 2
Notch Filter	Pn185	Depth of Notch Filter 2
Notch Filter	Pn186	Width of Notch Filter 2
Notch Filter	Pn187	Frequency of Notch Filter 3

Block	Parameter	Name
Notch Filter	Pn188	Depth of Notch Filter 3
Notch Filter	Pn189	Width of Notch Filter 3
Torque Filter	Pn105	Torque Reference Filter Time
Torque Filter	Pn110	Second Torque Reference Filter Time
Torque Limit	Pn401	Forward Internal Torque Limit
Torque Limit	Pn402	Reverse Internal Torque Limit

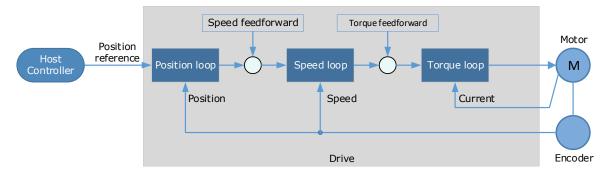
Restrictions

The following table shows a summary of functions available in manual tuning mode.

Function	Manual
Feedforward (Velocity and Torque)	Yes
Friction Compensation	Yes
Feedback Speed Selection	Yes
Load Torque Compensation	Yes
Automatic Vibration Suppression	Yes
Intermediate Frequency Vibration Suppression	Yes
Notch Filter	Yes
Load Oscillation Suppression	Yes
P / PI Switching	Yes
Gain Switching	Yes
Model Following Control	Yes

8.5 Compensation

The Drive offers several compensation techniques which can be used in various tuning modes to improve performance.


8.5.1 Feedforward

The table below shows the tuning modes where the feed forward function can be used.

Feedforward function	Available
Tuning-less	Yes
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

Feedforward includes both speed feedforward and torque feedforward.

- Speed feedforward can improve position response and reduce position following error
- Torque feedforward can improve the speed response and reduce the speed following error

In general, the differential of the position reference is used as the feedforward. This is known as an internal feedforward reference and is the default mode of operation. Other options are available for generating the feedforward reference.

- Internal Feedforward (default)
- Model Following Feedforward, available when Model Following Control is selected
- Cubic feedforward

Internal Feedforward

When using internal feedforward the reference is calculated using:

• Internal Speed Feedforward =

Differential of position reference × Speed Feedforward

• Internal Torque Feedforward =

Differential of speed reference × Load Inertia Percentage × Torque Feedforward

• Increasing the feedforward term will tend to reduce error during periods where the reference is constant. i.e. during periods of constant speed, the speed feed forward will allow to the control scheme to reduce following error, however the feedforward can introduce overshoot.

In addition, it may be required to filter the noise caused by the differential for the feedforward. Increasing the filter time will reduce the noise but may increase the overshoot.

In the case of high rotation speed, it may be necessary to use the high-speed torque feed forward function, this is selected by setting parameters:

- Pn005.0 to 2 (select high-speed internal torque feedforward)
- Pn005.2 to 0 (use internal torque feedforward)

Model Following Control Feedforward

This is only available when the Model Following Control function has been enabled.

For details on this method, refer to the section 8.8 Model Control Following.

Cubic Interpolation

Uses a cubic algorithm for interpolation of the reference

Parameters

Parameter	Setting	Meaning	
Pn005.0	0	Use the general internal torque feedforward.	
P11005.0	2	Use the high-speed internal torque feedforward.	
	0	Use the internal torque feedforward.	
Pn005.2	1	Use the model following control torque feedforward, which is available when Model Following Control Selection is enabled.	
	2	Reserved	

Parameter	Setting	Meaning
	3	Use the torque feedforward generated by Cubic interpolation algorithm.
	0	Use the internal speed feedforward.
Pn005.3	1	Use the model following control speed feedforward, which is available when Model Following Control Selection is enabled.
P11005.3	2	Reserved
	3	Use the speed feedforward generated by Cubic interpolation algorithm.
Pn112	-	Speed Feedforward
Pn113	_	Speed Feedforward Filter Time
Pn114	_	Torque Feedforward
Pn115	_	Torque Feedforward Filter Time

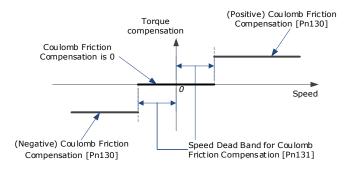
8.5.2 Friction Compensation

The table below shows the tuning modes where the friction compensation function can be used.

Friction Compensation function	Available
Tuning-less	Yes
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

Load friction will exist in the transmission system. However, severe load friction may cause low-speed crawling, waveform distortion at speed zero-crossing, positioning lag, etc. This can affect the dynamic and static performance of the system. The friction compensation function allows the drive to compensate for this and may be a requirement in applications with frequent forward and reverse motion, and high speed-stability requirements.

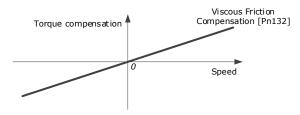
Friction compensation is used to compensate for both viscous friction fluctuations and coulomb friction fluctuations.


Coulomb Friction Compensation

Coulomb friction compensation is controlled though parameters Pn130 and Pn131.

Parameter	Setting	Meaning
Pn130	-	Coulomb Friction Compensation in 0.1% units of rated torque
Pn131	-	Speed Dead Band for Coulomb Friction Compensation in rpm

The application of coulomb friction compensation is symmetrical around zero speed. It is advisable to set a dead band for the friction compensation to avoid the system changing the compensation direction frequently near zero speed.


The diagram below shows the application of coulomb friction compensation.

Viscous friction compensation is controlled though parameter Pn132.

Parameter	Setting	Meaning
Pn132	_	Viscous Friction Compensation in 0.1% per 1000rpm

The application of viscous friction compensation is a linear relationship with the actual speed, as is shown below.

As the speed increase, so the viscous friction compensation increases with a rate defined by the Viscous Friction Compensation parameter.

8.5.3 Speed Feedback Selection

The table below shows the tuning modes where the speed feedback function can be used.

Speed Feedback function	Available
Tuning-less	No
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

By default, the speed feedback is calculated from by differentiating the positional value read from the encoder.

In the case of low speed or low encoder resolution, the method of position differentiation to calculate speed can introduce a large amount of noise in speed feedback which can affect the control performance.

To reduce the noise, a low pass filter can be applied to eliminate the noise and high-frequency components from the speed signal. The speed filter is controller though the Encoder Speed Filter Time parameter.

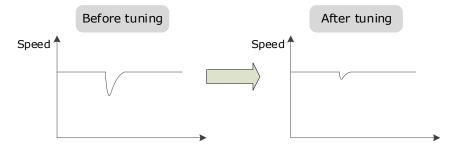
Parameter	Setting	Meaning
Pn135	_	Encoder Speed Filter Time in 0.01ms

Increase the time constant of the filter will have a stronger effect on the noise resulting in a smoother speed signal. But a strong filter will introduce phase lag, which can reduce the servo performance.

An alternative to using encoder position to calculate speed is to use a speed observer, this can provide a less noisy speed. The observed speed can be tuned to match actual speed using the Load Torque Observer Gain; however, this may introduce overshoot.

Parameter	Setting	Meaning
Pn161	_	Load Torque Observer Gain
Pn162	0 [Default]	Use encoder speed as the feedback speed.
PIIIOZ	1	Use observed speed as the feedback speed.

8.5.4 Load Torque Compensation


The table below shows the tuning modes where the load torque compensation function can be used.

Load Torque Comp. function	Available
Tuning-less	No
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

Sudden changes in load torque can significantly affect the speed control during operation. A step change in load torque will generally introduce a decrease in speed which will take some time for the control to rectify.

In applications with continuously changing load torque it is necessary to improve the anti-load disturbance performance of the servo.

The figure below shows the speed drop caused by a sudden load torque. The load torque compensation function can be used to reduce the effect of the load torque change.

Tuning the load torque compensation function can be used to improve the anti-load disturbance performance, considering that the reference response performance and the load disturbance resistance cannot be balanced.

The Load Torque Compensation function adjusts compensation to the torque reference via an observer function. To reduce the overshoot caused by Load Torque Compensation, use the load torque compensation percentage to adjust the compensation value:

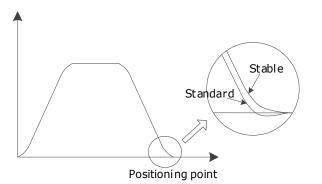
Load Torque Compensation = Load Torque Observer × Load Torque Compensation Percentage

Parameter	Setting	Meaning
Pn160	-	Load Torque Compensation Percentage

Increasing this value can improve the load disturbance rejection performance. Too much may cause vibration and overshoot.

In addition, the bandwidth of the load torque observer can be changed via Load Torque Observer Gain. Increasing this will make the observed torque closer to the actual torque but may generate overshoot.

Parameter	Setting	Meaning
Pn161	-	Load Torque Observer Gain


8.5.5 Damping Selection

The table below shows the tuning modes where the damping selection function can be used.

Damping Selection function	Available
Tuning-less	No
One-Parameter Auto Tuning	Yes
Manual Tuning	No

The Damping Selection selects between 2 damping options.

- [0] Standard: Short positioning time, but prone to overshoot.
- [1] Stable: Longer positioning time, but stable.

The damping selection can be made from the Tuning page in the drive commissioning screens.

Alternatively, the damping selection can be changed by directly writing to parameter Pn100.3.

Parameter	Setting	Meaning	
Pn100.3	0 [Default]	Shorter positioning time, but prone to overshoot	
FII100.3	1	Longer positioning time, but stable	

8.6 Vibration Suppression

The Drive offers several vibration suppression techniques which can be used in various tuning modes to improve performance.

8.6.1 Automatic Vibration Suppression

The table below shows the tuning modes where the automatic vibration suppression function can be used.

Automatic Vibration Suppression	Available
Tuning-less	Yes
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

The automatic vibration suppression function determines the vibration state of the Motor during operation and identifies the resonant frequency. It then selects either the Notch Filter or the IF Vibration

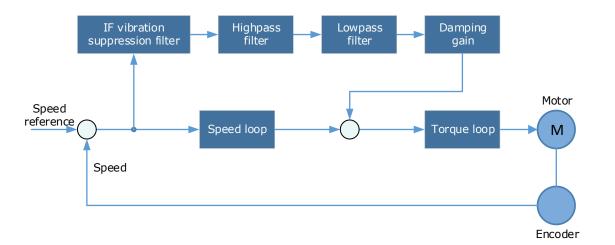
Parameter	Setting	Meaning
Pn179	_	Amplitude Threshold for Vibration Detection

Suppression according to the characteristics of the vibration. It will set the parameters for IF Vibration Suppression or Notch Filter 2, depending on what is required.

Automatic Vibration Suppression can be enabled from the Tuning screen in the drive parameter pages.

Alternatively, the this can be controlled by directly writing to parameter Pn100.2.

Parameter	Setting	Meaning
Pn100.2	0 [Default]	Automatic Vibration Suppression is disabled.
	1	Automatic Vibration Suppression is enabled.


To prevent the automatic vibration suppression acting on incorrect vibrations an amplitude threshold can be applied can. This will prevent the vibration suppression acting on any detected frequency unless it exceeds the threshold.

8.6.2 IF (Intermediate Frequency) Vibration Suppression

The table below shows the tuning modes where the IF vibration suppression function can be used.

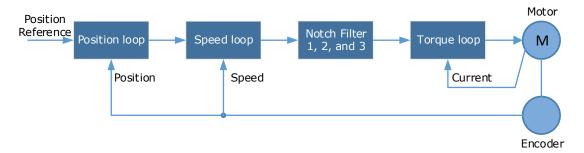
IF Vibration Suppression	Available
Tuning-less	Yes
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

The IF vibration suppression filter is used to process the speed deviation and provide compensation to the torque reference. It is applied for the frequency range 100 Hz to 2000 Hz.

Parameter	Setting	Meaning
Pn173	-	Frequency centre at which vibration suppression is performed
Pn174	-	Bandwidth of the vibration suppression filter. Indicates the range of the adjustment filter around the centre frequency. Increasing this setting can increase the range of vibration suppression, but it will affect the phase of the frequency near the centre
Pn175	-	Vibration Suppression

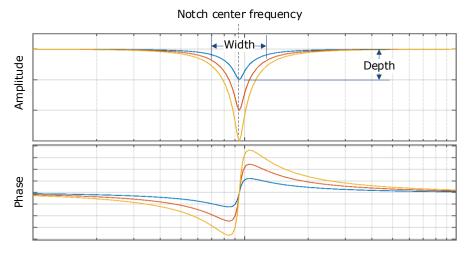
Parameter	Setting	Meaning
Pn176	_	Low pass Filter Time for Vibration Suppression
Pn177	-	High pass Filter Time for Vibration Suppression
Pn178	_	Level of the final compensated IF vibration suppression

NOTE: Set Pn173 to 2000, indicating the notch filter is unavailable

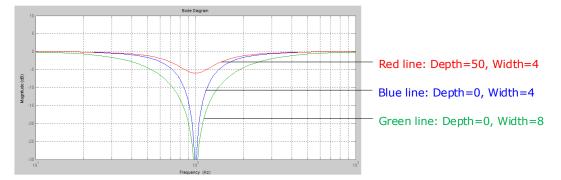

8.6.3 Notch Filter

The table below shows the tuning modes where the notch filter function can be used.

Notch Filter	Available
Tuning-less	Yes
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes


The notch filter is used to eliminate vibration caused by mechanical resonance.

There are three notch filters in the Drive, those who can used independently or in combination.


The diagram below shows the relevant parameters for the notch filter.

Notch filter can attenuate the signal at a specific frequency so can be very useful in removing resonance. Setting a correct frequency and width the vibration signal in the torque reference can be filtered out.

Parameters controlling the operation of notch filter are:

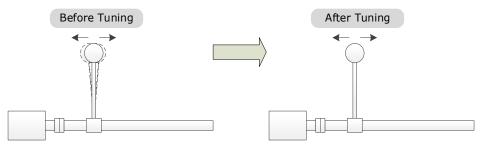
- Frequency, setting the frequency of notch filter to 5000 will disable the notch filter.
- Depth, the range of depth is from 0 to 23.
- Width, the range of width is from 0 to 15.

The notch filter parameters can be set from the Tuning page in the drive commissioning screens.

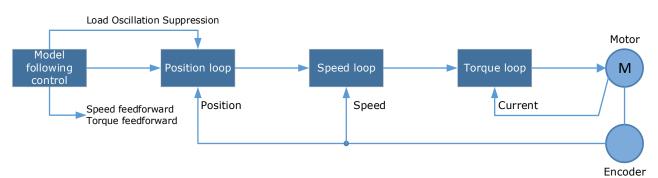
Alternatively, the filt	ers can be configured	d by directly writin	g to the parameters.
Accentactively, ene the	cers can be configured	a by an every minen	5 to the parameters.

Parameter	Setting	Meaning
Pn181	_	Frequency of Notch Filter 1
Pn182	_	Depth of Notch Filter 1
Pn183	_	Width of Notch Filter 1
Pn184	_	Frequency of Notch Filter 2
Pn185	_	Depth of Notch Filter 2
Pn186	_	Width of Notch Filter 2
Pn187	_	Frequency of Notch Filter 3
Pn188	_	Depth of Notch Filter 3
Pn189	_	Width of Notch Filter 3

8.6.4 Load Oscillation Suppression


The table below shows the tuning modes where the load oscillation suppression function can be used.

Load Oscillation Suppression	Available
Tuning-less	No
One-Parameter Auto Tuning	No
Manual Tuning	Yes


This cannot be used in fully-closed loop control (dual encoder feedback).

The Load Oscillation Suppression function is used for suppressing low frequency jitter at the end of the load during position control.

The aim of the Model Following Control is to maintain the stability of the load position based on a relationship between load position and Motor position. This is done by correcting the position reference and generating new speed and torque feedforward values.

The block diagram below shows Load Oscillation Suppression.

This function is based on the Model Following Control (8.8) and enabled via Pn150.

Parameter	Setting	Meaning
Pn150.0	2	Use the model following control and load oscillation suppression.

Changing the model following control mode will require the drive to be restarted.

Parameters controlling the operation of load oscillation suppression are:

- Frequency, which specifies the frequency at which Load Oscillation Suppression is to be performed.
- Filter Time, increasing this setting will strengthen the filter. However, it may reduce the suppression effect due to lag.
- Limit, which will clip the output of the Load Oscillation Suppression, helping to reduce overshooting during starting and stopping.

Parameter	Setting	Meaning
Pn155	-	Load Oscillation Frequency in Hz
Pn156	-	Filter Time for Load Oscillation Suppression
Pn157	_	Limit for Load Oscillation Suppression

8.7 Gain Scheduling

The Drive offers several gain scheduling techniques which can be used in various tuning modes to improve performance.

8.7.1 P/Pl Switching

The table below shows the tuning modes where the P/PI switching function can be used.

P/PI Switching	Available
Tuning-less	No
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

By default, the Drive uses a Proportional-Integral (PI) Controller for the speed loop. This can be changed from PI to P control based on some reference condition using parameter Pn116.

Parameter	Setting	Meaning	
	0 [Default]	Use torque reference as the condition (threshold setting: Pn117).	
	1	Use position deviation counter as the condition (threshold setting: Pn118).	
Pn116	2	Use acceleration reference as the condition (threshold setting: Pn119)	
	3	Use the speed reference as the condition (threshold setting: Pn120).	
	4	Fixed to PI Control.	

Changing the P/PI switching condition will require the drive to be restarted

The relevant threshold parameters are shown in the table below.

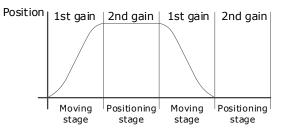
Parameter	Setting	Meaning
Pn117	_	Torque Reference threshold
Pn118	_	Deviation Counter threshold
Pn119	-	Acceleration Reference threshold
Pn120	_	Speed Reference threshold

Consider the default settings as an example. The default setting is to use torque reference as the condition, and the default Torque Reference threshold (Pn117) is 200.

- When the torque reference percentage is less than 200, the speed loop adjustment will be PI control
- When the torque reference percentage is greater than 200, the speed loop adjustment will be P control

8.7.2 Gain Switching

The table below shows the tuning modes where the gain switching function can be used.

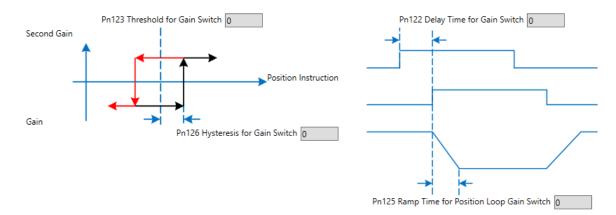

Gain Switching function	Available
Tuning-less	No
One-Parameter Auto Tuning	No
Manual Tuning	Yes

In manual tuning mode a gain switching function can be used which allows the drive to swap between two sets of gain parameters based on operating conditions.

The figure below shows an example:

- The 'positioning' gain terms focus on the performance such as position ripples and positional rigidity
- The 'moving' gain terms focus on the performance such as following error.

In this case, two switchable groups of gain parameters are required to meet the servo performance.



Gain switching can be enabled from the Tuning page in the drive commissioning screens. The conditions for gain switching are selected from a drop down.

Options are:

- Fixed to first group gains.
- Use digital input (G-SEL) as the condition.
- Use torque reference as the condition.
- Use position deviation counter as the condition.
- Use acceleration as the condition.
- Use speed reference as the condition.
- Use position reference as the condition.
- Use actual speed as the condition.
- Use position reference and actual speed as the condition.
- Fixed to second group gains.
- Use positioning completed flag as the condition.

Once gain switching is selected the switch conditions will be shown.

And any additional gain terms parameters will be available from the control law block diagram

osition	Control					
NO.	Name	Value	Default	Range	Units	
				0 ~ 1000		
Pn109	Second Position Loop Gain	40		0 ~ 1000		
 This 	s parameter determines the ba	ndwidt	n of positi	ion loop.		
					Ар	ply

Alternatively, gain switching can be enabled by directly to the parameters.

Parameter	Setting	Meaning
	0 [Default]	Fixed to first group gains.
	1	Use digital input (G-SEL) as the condition.
	2	Use torque reference as the condition (threshold setting: Pn123).
	3	Use position deviation counter as the condition (threshold setting: Pn123).
	4	Use acceleration as the condition (threshold setting: Pn123).
Pn121	5	Use speed reference as the condition (threshold setting: Pn123).
	6	Use position reference as the condition (threshold setting: Pn123).
	7	Use actual speed as the condition (threshold setting: Pn123).
	8	Use position reference (Pn123) and actual speed (Pn124) as the condition.
	9	Fixed to second group gains.
	10	Use positioning completed flag as the condition.

Changing the gain switching condition will require the drive to be restarted

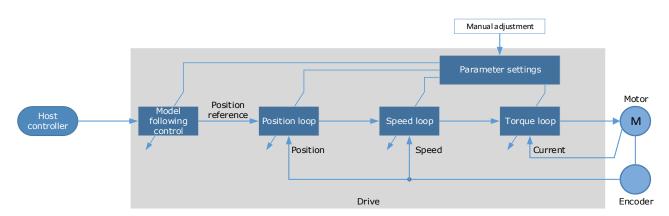
The parameters for the first gain and the second gain terms are as follows.

Parameter	First Gain	Second Gain
Speed Loop Gain	Pn102	Pn107
Speed Loop Integral Time	Pn103	Pn108
Position Loop Gain	Pn104	Pn109
Torque Command Filter Time	Pn105	Pn110

8.8 Model Control Following

The table below shows the tuning modes where the model control following function can be used.

Model Control Following	Available
Tuning-less	No
One-Parameter Auto Tuning	No
Manual Tuning	Yes



This cannot be used in fully-closed loop control (dual encoder feedback).

The Model Following Control is a function which sits before the position loop. In Model Following Control, new position references are generated based on the theoretical Motor control model, and relevant speed feedforward and torque feedforward are generated.

Applying these controls to the actual control loop can significantly improve the response performance and positioning performance of the position control.

The block diagram below shows the implementation of model following control.

The Model Following Control function is enabled via Pn150.

Parameter	Setting	Meaning
	0 [Default]	Do not use Model Following Control.
Pn150.0	1	Use the model following control.
	2	Use the model following control and load oscillation suppression.

Changing the model following control mode will require the drive to be restarted

To use the Model Following Control properly, the system should be setup in the following order:

Torque Loop \rightarrow Speed Loop \rightarrow Position Loop \rightarrow Model Following Control.

For details on the relevant parameter of Torque Loop, Speed Loop and Position Loop, refers to the section 8.4.3 Manual Tuning.

The relevant parameters for Model Following Control are as follows.

Parameter	Setting	Meaning
Pn151	-	Model Following Control Gain
Pn152	-	Model Following Control Gain Correction
Pn153	_	Model Following Control Speed Feedforward (conditional on Pn005.3=1)
Pn154	_	Model Following Control Torque Feedforward (conditional on Pn005.2=1)

The gain determines the position response performance. Increasing this setting can improve speed of response, but overshooting is likely to occur.

The gain correction determines the damping ratio.

The (speed/torque) feedforward is a percentage factor that is used to adjust the feedforward value.

8.9 Load Identification

There are several tools which can be used help the tuning process.

8.9.1 Load Inertia Identification

The table below shows the tuning modes where the load inertia identification function can be used.

Load Inertia Identification	Available
Tuning-less	No
One-Parameter Auto Tuning	Yes
Manual Tuning	Yes

The Load Inertia Identification function is used to calculate the load inertia relative to the Motor rotor inertia (percentage of load inertia).

The Load Inertia Identification function can be started from the Tuning page in the drive commissioning screens. Click on the 'Inertia Detection' button.

This will launch a wizard to guide the inertia detection sequence.

The identification routine will rotate the Motor back and forth either 4 or 8 times, during this movement the inertia is calculated. At the end of the identification routine, the result is displayed with the option to update the inertia value in Pn106.

To perform this function the Drive must be disabled.

Ensure the movable parts have sufficient travel in the forward and reverse directions, as the Motor will run for up to 8 rotations during this operation.

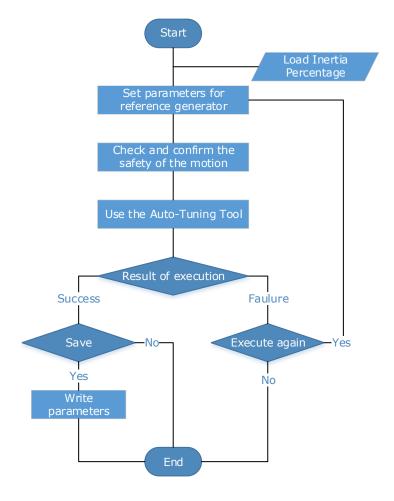
8.9.2 Auto-Tuning Tool

The table below shows the tuning modes where the auto tuning function can be used.

Auto-Tuning function	Available
Tuning-less	No
One-Parameter Auto Tuning	No
Manual Tuning	Yes

The Auto-Tuning Tool uses the drives internal position reference generator to exercise the Drive while iteratively changing the control parameters to achieve a tuned system.

The Auto-Tuning Tool can be started from the Tuning page in the drive commissioning screens. Click on the 'Parameter Auto Tuning' button.

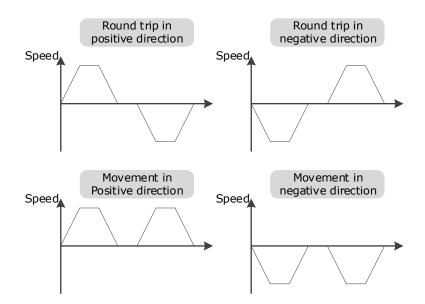


Parameter Auto-Tuning

Auto-detect tuning parameters

This will launch a wizard to guide the parameter auto-tuning sequence.

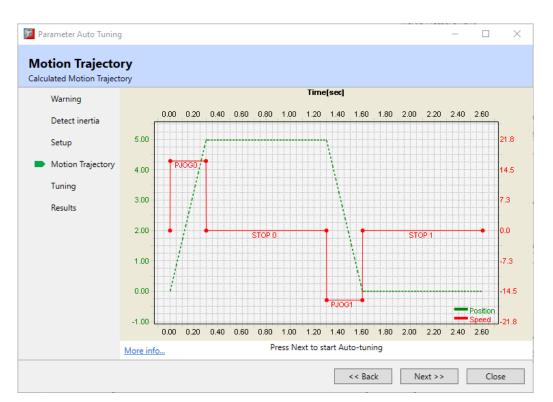
The sequence is described in the flow chart below.


The steps in the wizard are:

- Detect Inertia
- Setup
- Motion Trajectory
- Tuning
- Results

Detect Inertia: A pre-request for the Parameter-Auto Tuning is an accurate measurement of inertia. This can be entered manually or measured using the Inertia Detection tool. For more details on inertia detection see 0There are several tools which can be used help the tuning process.

Load Inertia Identification.


Setup: The drive will repeatedly run two moves during the Parameter Auto-Tuning, these are described by Distance, Speed and Dwell Time. The sequence can be either position/negative or negative/positive.

The Setup screen allows entry of the parameters which describe the motion.

Parameter Auto Tuning	9										×
Setup											
nit parameters											
Warning	Online Vibration Suppression										
Detect inertia	First move	First move									
	Name	Value	Defau	lt R	ange	Units					
Setup	Move Distance for first move	5	5	-5	i0 ~ 50	rev					
Motion Trajectory	Max Speed for first move Dwell Time for first move	1000 1000		_	00 ~ 3000 00 ~ 10000	rpm					
Tuning	Second move	1000	1000			1113					
Results	Name	Va	lue De	fault	Range	Ur	nits				
	Move Distance for second mov	/e -5	-5		-50 ~ 50	rev	/				
	Dwell Time for second move	10	00 100	0	100 ~ 100	00 ms					
Move Distance for second move 1000 1000 100 ~ 3000 rpm Max Speed for second move 1000 1000 100 ~ 3000 rpm Dwell Time for second move 1000 1000 100 ~ 10000 ms											
	More info		Press	Арр	ly to continu	Je. Back		Apply		Clos	

Motion Trajectory: This is an opportunity to review the defined motion sequence before starting the tuning sequence.

Tuning: During the internal tuning process, the progress is displayed on screen.

Darameter Auto Tuning)			_		\times
Tuning Parameter Auto Tuning.						
Warning						
Detect inertia						
Setup						
Motion Trajectory		54				
Tuning		्रें हि Ти	ning			
Results	Speed Loop: Position Loop: Notch Filter: Vibration Supression Filter:					
	more more					
			<< Back	Next >>	Abor	t

Results: Once the tuning process has completed, the calculated gain terms will be displayed with an option to save them to the drive.

	3				- 0
sults					
re auto-tuning param	eters				
Warning	NO.	Name	Current Value	Tuned Value	Units
2	Pn102	Speed Loop Gain	500	1658	rad/s
Detect Inertia	Pn103	Speed Loop Integral	125	37	0.1ms
Catura	Pn104	Position Loop Gain	40	320	1/s
Setup	Pn105	Torque Reference Filt	50	10	0.01ms
Motion Trajectory	Pn173	Frequency of Vibratio	2000	2000	Hz
	Pn181	Frequency of Notch F	5000	5000	Hz
Tuning	Pn184	Frequency of Notch F	5000	5000	Hz
Results	Pn187	Frequency of Notch F	5000	5000	Hz
	More info	Press "Finish"	to save results and	close the wizard.	

8.10 Motor Overload Duration & Cycle Times

MXL Motors

Overload %	Overload Time (Secs)							
overtoud //	50/100W	200W	400W	750W	1KW			
150	88.7	184.8	50.4	652.3	115.2			
200	12.7	26.4	16.4	93.0	24.0			
250	4.3	10.3	8.9	31.8	11.4			
300	2.2	6.6	5.7	15.9	7.5			
350	1.6	4.6	4.0	11.2	5.3			

MXM Motors

Overload %	Overload Time (Secs)					
	1KW	1.5KW	2KW	3KW		
150	216.0	120.0	120.0	216.0		
200	90.0	50.0	50.0	90.0		
250	15.0	12.5	12.5	15.0		
300	6.1	5.7	5.7	6.1		
350	-	-	-	-		

Care must be taken to ensure that the duty cycle is not exceeded when using high percentage overload durations.

For example:

Using a 400W motor at 350% the maximum time at this level must not exceed 4.0 secs.

The motor will now have to wait 45 secs before it is safe to run again at a higher level of percentage overload.

Off Time = (Overload % Factor^2 * Overload Time) - Overload Time

Off Time = (3.5 ² x 4.0) - 4.0 = 45.0s

Chapter 9 MODBUS Communications

9.1 Communication Wiring

The connection terminals CN3-IN and CN4-OUT are used for MODBUS communications.

Connector	Pin	Definition	Description
\square	3	RS485+	RS-485 communication terminal +
	4	GNDW	
	5	GNDW	Signal GND
	6	RS485-	RS-485 communication termina-
	Housing	FG	Shielded wire is connected to the housing

The signal definitions of CN3-IN and CN4-OUT are the same.

9.2 Setting Communication Parameters

Number	Name	Setting & Meaning	When Enabled
Pn700.0	MODBUS Communication Baud Rate	[0]: 4800bps [1]: 9600bps [2]: 19200bps	
Pn700.1	Communication Protocol	 [0]: 7, N, 2 (Modbus, ASCII) [1]: 7, E, 1 (Modbus, ASCII) [2]: 7, O, 1 (Modbus, ASCII) [3]: 8, N, 2 (Modbus, ASCII) [4]: 8, E, 1 (Modbus, ASCII) [5]: 8, O, 1 (Modbus, ASCII) [6]: 8, N, 2 (Modbus, RTU) [7]: 8, E, 1 (Modbus, RTU) [8]: 8, O, 1 (Modbus, RTU) 	After restart
Pn700.2	Communication Protocol Selection	[0] No protocol SCI communication [1] MODBUS SCI communication	
Pn701	Axis Address	Axis address of MODBUS protocol communication	

9.3 MODBUS Communication Protocol

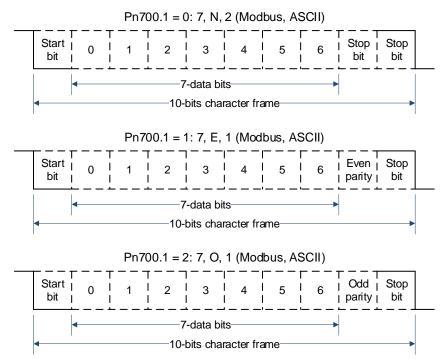
MODBUS communication protocol is only used when Pn700.2 is set to 1. There are two modes for MODBUS communication: ASCII (American Standard Code for information interchange) mode and RTU (Remote Terminal Unit) mode.

9.3.1 Code Meaning

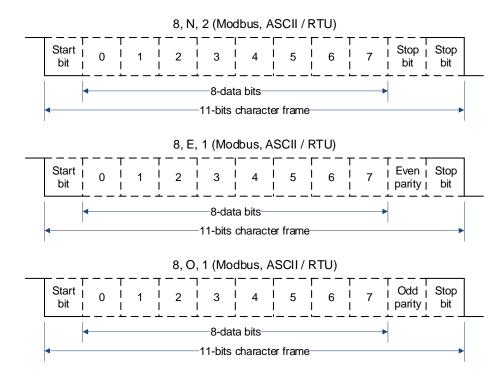
ASCII Mode

Every 8-bit data is consisted by two ASCII characters. For example: One 1-byte data $64_{\rm H}$ (Hexadecimal expression) is expressed as ASCII code '64', which contains '6' as ASCII code 36 $_{\rm H}$ and '4' as ASCII code 34 $_{\rm H}$.

Character	' 0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII Code	30 _н	31 _Н	32 _H	33 _H	34 _H	35 _н	36 _н	37 _Н
Character	'8'	'9'	'A'	'В'	'C'	'D'	'E'	'F'
ASCII Code	38 _Н	39 _Н	41 _H	42 _H	43 _H	44 _H	45 _Н	46 _Н


ASCII code for number 0 to 9, character A to F are as follows:

RTU Mode


Every 8-bit data is consisted by two 4-bit hexadecimal data, that is to say, a normal hexadecimal data. For example: decimal data 100 can be expressed as $64_{\rm H}$ by 1-byte RTU data.

Data Structure

• 10bit character form (7-bit data)

• 11bit character form (8-bit data)

9.3.2 Communication Protocol Structure

ASCII Mode

STX	Start character': ' = $>(3A H)$
ADR	Communication address = > 1-byte contains two ASCII codes
CMD	Reference code = > 1-byte contains two ASCII codes
DATA(n-1)	
	Data content = $>$ n-word=2n-byte contain 4nASCII codes, n \leq 12
DATA(0)	
LRC	Checking code=>1-byte contains two ASCII codes
End 1	End code $1 = >$ (OD H) (CR)
End 0	End code $0 =>$ (0A H) (LF)

RTU Mode

STX	Sleep interval of at least 4 bytes transmission time.
ADR	Communication address = > 1-byte
CMD	Reference code = > 1-byte
DATA(n-1)	
	Data content = $>$ n-word=2n-byte, n \leq 12
DATA(0)	
CRC	CRC checking code = >1-byte
End 1	Sleep interval of at least 4 bytes transmission time.

Communication protocol data format instructions

- STX (communication start)
 - ASCII mode: ': ' character
 - RTU mode: Sleep interval of at least 4 bytes transmission time (automatically changed according to different communication speed).
- ADR (communication address)

Valid communication address: 1 to 254

For example: communicate with the servo drive which address is 32 (20 in hex):

- ASCII mode: ADR='2', '0'= > '2'=32 $_{\text{H}}$, '0'=30 $_{\text{H}}$
- RTU mode: ADR=20_H
- CMD (command reference) and DATA (data)

Data structure is determined by command code. Regular command code is shown as follows: Command code: 03H, read N words(word), N \leq 20.

For example: read 2 words starting from 0070_{H} from the servo drive which address is 01_{H} .

ASCII Mode			
Reference Information		Response Information	
STX	"."	STX	"."
	·0'		·0'
ADR	'1'	ADR	'1'
CHD	·0'	CHD	·0'
CMD	'3'	CMD	'3'
	·0'	Data number (count as	·0'
Data start address	·0'	byte)	'4'
Data start address	'7'	Content of data start	·0'
	·0'	address 0200 _H	·0'
Data number (count as word)	·0'		·0'
	·0'		·0'
	·0'	Content of second data	·0'
	'2'	address 0201 _H	·0'
LRC checking	'8'		·0'
	'A'		·0'
End 1	(0D _H)(CR)	LRC checking	'F'
End 0	(0A _H)(LF)		'8'
	•	End 1	(0D _H)(CR)

End 0

(0A_H)(LF)

RTU Mode	
Reference Information	
ADR	01 _Н
CMD	03 _н
Data start address	00 _H (high-bit)
	70 _H (low-bit)
Data number (count as word)	00 _н
	02 _H
CRC checking	C5 _H (low-bit)
CRC checking	D0 _H (high-bit)

Response Information			
ADR	01 _H		
CMD	03 _H		
Data number (count as byte)	04 _H		
Content of data start address	00 _H (high-bit)		
0200 _H	00 _H (low-bit)		
Content of second data	00 _H (high-bit)		
address 0201 _H	00 _H (low-bit)		
CRC checking	FA _H (low-bit)		
CRC checking	33 _H (high-bit)		

For example: write $1(0001_{H})$ into 01_{H} servo address 0070_{H} . Reference code: 06_{H} , write in one word

ASCII Mode			
Reference Information		Response Information	
STX	"."	STX	","
	·0'		'0'
ADR	'1'		'1'
CHD	·0'	CHD	'0'
CMD	'6'		'6'
Data start address	·0'	Data number (count a	s '0'
	'0'	byte) Content of data start	'4'
	address 0200		'0'
	·0'	address 0200 _H	'0'
Data content	·0'		'7'
	·0'		'0'
	·0'	$ \begin{array}{c} ADR & \begin{array}{c} & \end{array} \end{array} \end{array} \end{array} \right)} \end{array} \right)} \end{array} \right)} \end{array} \right)} \end{array} \right) \\ \end{array} $:a '0'
	'1'	address 0201 _H	'0'
LRC checking	' 8'		'0' '1' '0' '1' '8'
	' 8'		'1'
End 1	(0D _H)(CR)		'8'
End 0	(0A _H)(LF)		'8'
		End 1	(0D _H)(CR)
		End 0	(0A _H)(LF)

RTU Mode				
Reference Information			Response Information	
ADR	01 _H		ADR	01 _н
CMD	06 _н		CMD	06 _н
Data start address	Data start address 00 _H (high-bit) 70 _H (low-bit)		Data start address	00 _н (high-bit)
				70 _H (low-bit)
Data content	00 _H (high-bit)		Data content	00 _H (high-bit)
	01 _H (low-bit)			01 _H (low-bit)
CRC checking	49 _H (low-bit)		CRC checking	49 _H (low-bit)
CRC checking	D1 _H (high-bit)		CRC checking	D1 _H (high-bit)

LRC (ASCII mode) and CRC (RTU mode) Error Detection Value Calculation

• LRC calculation in ASCII mode:

ASCII mode uses LRC (Longitudinal Redundancy Check) error detection value. The exceeded parts (e.g. the total value is $128_{\rm H}$ of hex, then take $28_{\rm H}$ only) is taken off by the unit of 256 in the total value from ADR to the last information, then calculate and compensate, the final result is LRC error detection value.

For	example:	read 1	word	from	01 _H	servo	address	0201
-----	----------	--------	------	------	-----------------	-------	---------	------

STX	·. ·
ADR	'0'
ADK	'1'
CMD	'0'
	'3'
	'0'
Data start address	'2'
Data start address	'0'
	'1'
	'0'
Data number (count as word)	'0'
Data number (count as word)	'0'
	'1'
LPC checking	'F'
LRC checking	'8'
End 1	(0D _H)(CR)
End 0	(0A _H)(LF)

Add from ADR data to the last data.

01_H +03_H +02_H +01_H +00_H +01_H =08_H

The compensate value is F8 $_{\rm H}$ when 2 is used to compensate 08 $_{\rm H}$, so LRC is "F", "8".

• CRC calculation of RTU mode:

RTU mode uses CRC (Cyclical Redundancy Check) error detection value.

The process of CRC error detection value calculation is shown as follows:

- Step 1 Load in a 16-bit register of $FFFF_H$, named "CRC" register.
- Step 2 Run XOR calculation between the first bit (bit 0) of instruction information and 16-bit CRC register's low bit (LSB), and the result is saved to CRC register.
- Step 3 Check the lowest bit (LSB) of CRC register, if it is 0, CRC register moves one bit to right; if it is 1, CRC register moves one bit to right, then run XOR calculation with A001 $_{\rm H}$;
- Step 4 Go to step 5 till the third step has been executed for 8 times, otherwise return to step 3.
- Step 5 Repeat the steps from 2 to 4 for the next bit of instruction information, the comment of CRC register is the CRC error detection value while all the bits have been executed by the same way.

<u>Example</u>

After calculating out the CRC error detection value, the CRC low bit should be filled first in instruction information, and then fill the high bit of CRC. Refer to the following example.

Read 2 words from the 0101 $_{\rm H}$ address of 01 $_{\rm H}$ servo. The final CRC register content calculated from ADR to the last bit of data is 94 $_{\rm H}$, and then the instruction information is shown as follows. Please be sure that 94 $_{\rm H}$ is transmitted before 37 $_{\rm H}$.

01 _H
03 _Н
01 _H (high-bit)
01 _H (low-bit)
00 _H (high-bit)
02 _H (low-bit)
94 _H (low-bit)
37 _H (high-bit)

End1, End0 (Communication is completed.)

ASCII Mode:

Communication is ended with (0D $_{\rm H}$) - [carriage return] and (0A $_{\rm H}$) - [new line].

RTU Mode

When the time exceeds the sleep interval by at least 4 bytes transmission time while in the current communication speed, it means the communication is finished.

9.3.3 Communication Error Disposal

Problems that occur during communication are a result of the following:

- Data address is incorrect while reading/writing parameters.
- The data is not within the parameter setting range while writing.
- Data transmission fault or checking code fault when communication is disturbed.

When the first and second communication faults occur, the servo drive is running normally, and will feed back an error frame.

When the third communication fault occurs, transmission data will be recognized as invalid to give up, and no error frame is returned.

The format of error frame:

Host controll	er data frame:			
start	Slave station address	Command	Data address, content	Checking
_	_	command	_	_

Servo drive f	eeds back error frame:			
start	Slave station address	Response code	Error code	Checking
_	-	Command + 80 _H	_	-

Error frame responses code=command+80 H;

Error code = 00_{H} : Normal communication

= 01_{H} : Servo drive cannot identify the required functions

= 02_{H} : The required data address does not exist in the servo drive

= 03 _H: The required data in servo drive is not allowed (beyond the maximum or minimum value of the parameter)

 $= 04_{H}$: Servo drive starts to perform the requirement, but cannot achieve it.

For example: Servo drive axis number is $03_{\rm H}$, write data 5000 into parameter Pn102 is not allowed, because the range of parameter Pn102 is 1~4000. The servo drive will feedback an error frame, the error code is $03_{\rm H}$ (beyond the parameter's maximum value or minimum value). The structure is as follows:

Host controller data frame				
start	Slave station address	Command	Data address, content	Checking
_	03 _H	06 _H	0066 _н 1388 _н	-

Servo drive f	eedback error frame:			
start	Slave station address	Response code	Error code	Checking
_	03 _H	86 _H	03 _H	-

Besides, if the data frame sent from host controller slave station address is 00_{H} , it determines the data to be broadcast data. The servo drives will not feedback any frames.

9.3.4 Data Communication Address of Servo State

Data Address	Meaning	Description	Operation
01F0 ~ 0B47	Parameter area	Corresponding parameters in parameter list	Read/write
1011 ~ 101A	Alarm information memory area	Ten alarms historical record	Read only
0F00	Virtual DI input		Read/write
0E8C	DI status	Un005	Read only
0E8D	TouchProbe input status	Un006	Read only
0E8E	DO status	Un007	Read only
0E86	Speed feedback	Un000	Read only
0E87	Speed setting	Un001	Read only
0E88	Input torque reference percentage	Un002	Read only
0E89	Internal torque reference percentage	Un003	Read only
0E8A ~ 0E8B	Encoder rotation pulse number	Un004	Read only
0E8F	Pulse setpoint of 1ms	Un008	Read only

Data Address	Meaning	Description	Operation
0E90 ~ 0E93	Current position	Un009	Read only
0E94 ~ 0E97	Deviation pulse counter	Un011	Read only
0E98 ~ 0E9B	Given position	Un013	Read only
0E9C	Percentage of load inertia	Un015	Read only
0E9D	Motor overload ratio	Un016	Read only
0EAD	Servo current alarm number		Read only
0F3A	Encoder multi-turn information		Read only
0F3B ~ 0F3C	Encoder single-turn information		Read only
1021	Clear historical alarms		Write only
1022	Clear current alarms		Write only
1040	Clear encoder alarm		Write only
1041	Clear encoder multi-turn data		Write only

Servo Parameter Area

The Pn parameter of corresponding servo. Pn parameter is 32bit, formed by splicing two consecutive hexadecimal data addresses (low- and high-bit). When reading and writing, operate the low-bit first, then high-bit.

For the start parameter Pn000, the low-bit address is $01F0_{H}$, and the high-bit address is $01F1_{H}$.

For other parameters Pnx, the low-bit address is $01F0_{H}+x^{*}2$, and the high-bit address is $01F1_{H}+x^{*}2$.

For example: when writing to Pn000, the data written is 1; write 1 to $01F0_H$ first, and then write 0 to $01F1_H$.

Alarm Information Storage Area

Historical Alarm Number	Description	Communication Address
0	Historical alarm 1 (the latest alarm)	1101 _H
1 ~ 8	Historical alarms 2 ~ 9	1102 _H ~ 1109 _H
9	Historical alarm 10 (the furthest alarm)	101А _Н

Chapter 10 Alarm Displays

10.1 Alarm Classifications

There are three classifications of alarms for the Drive: Gr.1, Gr.2, and Warning. They will affect the display and operation of the Servo System.

Classification	Stopping Method	Panel Display
Gr.1	Stops the Motor according to the setting of Pn003.0. For details, refers to 5.4.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF.	The Panel Operator displays between Alarm No and Servo state FLT by turns.
Gr.2	Stops the Motor according to the setting of Pn004.0 For details, refers to 0	
Warning	Do not stop the Motor, and keep the current operation	The Panel Operator displays between Alarm No and Servo state run by turns.

10.2 Alarm Detailed

10.2.1 Gr.1 Warning

A.01: Parameter destruction

Possible causes	Confirm the method	Action
The supply voltage drops instantaneously	Measure the supply voltage.	The supply voltage is set within the specification range and the initialization of the parameter setpoint is performed.
Parameters are written to interrupt power	Confirm the time of the power outage.	Re-write the parameter after restoring the factory value of the parameter (Fn001).
Malfunction due to noise	Confirm the runtime environment.	Take anti-interference countermeasures and then power the drive back in.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.03: Motor overspeed

Possible causes	Confirm the method	Action
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.
The instruction input value exceeds the overspeed value	Confirm the input instruction.	Lower the instruction value, or adjust the gain.
The motor speed exceeds the maximum speed	Confirm the waveform of the motor speed.	Reduce the speed command input gain or adjust the setting of the Pn323 (Overspeed Alarm Detection Threshold).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	It may be a drive failure. Replace the drive.

A.04: Overload

Possible causes	Confirm the method	Action
Motor wiring, encoder wiring, or poor connection	Confirm the wiring.	Check whether there is a problem with the motor wiring and encoder wiring.
The motor runs beyond the overload protection characteristics	Confirm the overload characteristics and operating instructions of the motor。	Revisit load conditions and operating conditions. Or revisit the motor capacity.
Due to mechanical factors, the motor is not driven, resulting in excessive load during operation	Confirm the operating instructions and motor speed.	Improve mechanical factors.

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.05: The position deviation counter overflows

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates too much	Try slowing down the instruction acceleration before running.	With the EtherCAT command, the position command acceleration is reduced.
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.06: The position deviation pulse overflows

Possible causes	Confirm the method	Action
Servo ON is maintained when the position deviation in servo OFF exceeds the setpoint of (Pn504× electronic gear).	Confirm the amount of positional deviation when servo OFF。	Set the correct deviation counter overflow alarm (Pn504) when servo ON.

A.07: The electronic gear setting or pulse frequency is unreasonable

Possible causes	Confirm the method	Action
The setting of the electronic gear ratio: Pn725/Pn726 (6093-01h/6093-02h) is not within the set range	Confirm that the electronic gear ratio is within a reasonable range	<pre>The setting range of the electronic gear ratio depends on the number of encoder bits: Encoder bits≤20, set range: [0.001, 4000] Encoder bits≤21, set range: [0.001, 8000] Encoder bits≤22, set range: [0.001, 16000] Encoder bits≤23, set range: [0.001, 32000] Encoder bits≤24, set range: [0.001, 64000]</pre>

A.08: There is a problem with the first channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.09: There is a problem with the second channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.12: Overcurrent

Possible causes	Confirm the method	Action
The main circuit cable is wired incorrectly, or the contact is poor	Confirm that the wiring is correct.	Modify the wiring.
The main loop cable is shorted internally or a short-to-ground circuit has occurred	Confirm whether a short circuit has occurred between the UVW phases of the cable and between the UVW and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.
A short circuit or short-to- ground circuit occurs inside the drive	Confirm whether a short circuit has occurred between the UVW phases of the motor connection terminals of the drive and between the UVW and the ground.	It may be a drive failure. Replace the drive.
The braking resistor is wired incorrectly or has poor contact	Confirm that the wiring is correct.	Modify the wiring.
Dynamic brakes (emergency stops due to DB or drives) are used frequently, or DB brake circuit damage alarms occur	The DB usage frequency is confirmed by the DB resistor power dissipation. Or use the alarm display to confirm if damage to the DB braking circuit (A.1B) has occurred.	变更驱动器的选型,运行方法和 机构,以降低 DB 的使用频率。
Exceeds the braking capacity	Confirm how often the braking resistor is used.	Change the selection, operating method, and mechanism of the drive to reduce the frequency of DB usage.
The braking resistance value of the drive is too small	Confirm how often the braking resistor is used.	Change the braking resistance value to a value above the minimum allowable resistance value of the drive.
High loads are tolerated when the motor is stopped or when running at low speeds	Confirm that the operating conditions are outside the specification range of the servo drive.	Reduce the load on the motor. Or run at a higher operating speed.

Possible causes	Confirm the method	Action
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Take anti-interference measures, such as correct wiring of FG. In addition, please use a wire with the same size as the driver main circuit wire for the FG wire size.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.13: Overvoltage

Possible causes	Confirm the method	Action
The supply voltage is out of specification	Measure the supply voltage.	Adjust the AC/DC supply voltage to the product specifications.
The power supply is in an unstable state or has been affected by lightning strikes	Measure the supply voltage.	Improve power conditions and power the drive again after setting the surge suppressor. When an alert still occurs, it may be a drive failure. Replace the drive.
Acceleration and deceleration occur when the AC supply voltage exceeds the specification range	Confirm the supply voltage and speed and torque during operation.	Adjust the AC supply voltage to the product specifications.
The external braking resistance value is larger than the operating conditions	Confirm the operating conditions and braking resistance values.	Considering the operating conditions and loads, the braking resistance value is revisited.
Operates above the allowable moment of inertia or mass ratio	Confirm that the moment of inertia or mass ratio is within the allowable range.	Extend the deceleration time or reduce the load.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.14: Undervoltage

Possible causes	Confirm the method	Action
The supply voltage is below specification	Measure the supply voltage.	Regulate the supply voltage to the normal range.
The supply voltage drops during operation	Measure the supply voltage.	Increase the power supply capacity.
An instantaneous power outage occurs	Measure the supply voltage.	If the instantaneous stop hold time (Pn538) is changed, it is set to a smaller value.

Possible causes	Confirm the method	Action
The fuse of the drive is blown	_	Replace the drive, connect the reactor to the DC reactor connection terminals (P1, P2), and use the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.16: Regeneration abnormalities

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.18: The module is overheating

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1D: The temperature sensor is disconnected

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1E: The main charge circuit is faulty

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
The external regenerative resistance value or regenerative resistance capacity is insufficient, or it is in a continuous regeneration state	Again, the operating conditions or capacity are confirmed.	Change the regeneration resistance value and regenerative resistance capacity. Adjust the operating conditions again.
Continuously bear negative loads and are in a state of continuous regeneration	Confirm the load applied to the motor in operation.	Revisiting the system, which includes servo, mechanical, and operating conditions.
The capacity set in Pn536 (discharge resistor power) is less than the capacity of the external regenerative resistor	Confirm the connection of the regenerative resistor and the value of Pn536.	Corrects the setpoint of Pn536.
The value set in Pn535 (Discharge Resistor Resistance) is less than the external regenerative resistance value	Confirm the connection of the regenerative resistor and the value of Pn535.	Corrects the setpoint of Pn535.

Possible causes	Confirm the method	Action
The external regeneration resistance value is too large	Confirm that the regeneration resistance value is correct.	Change it to the correct resistance value and capacity.

A.1F: Short-to-ground fault

Possible causes	Confirm the method	Action
The motor cable has a short- circuit to ground	Confirm if a short circuit has occurred between the UVW of the cable and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short-to-ground circuit has occurred inside the drive	Confirm whether a short circuit has occurred between the UVW and the ground of the motor connection terminal of the drive.	It may be a drive failure. Replace the drive.

A.24: The main loop power supply is wired incorrectly

Possible causes	Confirm the method	Action
A single-phase AC power supply input (Pn007.1 = 0) is not set and a single-phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.

A.37: Control panel communication timed out

Possible causes	Confirm the method	Action
Poor connection between the operator panel and the drive	Confirm the contact of the connector.	Reinsert the connector. Or replace the cable.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Keep the operator panel body or cable away from devices/cables that are generating noise interference.
Operator panel failure	Connect the operator panel again. When an alarm still occurs, it is possible that the operator panel is malfunctioning.	Replace the operator panel.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.42: The motor power does not match the drive power

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity.	Match the capacity of the drive to the motor.

Possible causes	Confirm the method	Action
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.43: The encoder type is incorrect

Possible causes	Confirm the method	Action
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.45: Multi-turn data error

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below the specified value	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.46: Multi-turn data overflow

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
Multiple laps of data have overflowed	_	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using Motion Perfect 5.3 or above, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiture Massages"
		"Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.47: The absolute encoder battery voltage is too low

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 2.45V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.48: Absolute encoder battery voltage undervoltage

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.49: Multiple or single turn data anomalies were detected

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.50: The encoder is disconnected

Possible causes	Confirm the method	Action
The encoder cable is wired incorrectly	Confirm the wiring of the motor encoder cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Adopt anti-interference countermeasures.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor is malfunctioning.	Replace the motor.

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.51: Absolute encoder overspeed detection

Possible causes	Confirm the method	Action
When the control power is turned on, the motor rotates at a speed of more than 200 rpm	The speed of the motor is confirmed by the speed of the motor when the power is turned on.	Adjust the motor speed to less than 200 rpm and turn on the control power.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.52: An error occurred inside the encoder

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using Motion Perfect 5.3 or above, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.53: Error encoder lap information

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using Motion Perfect 5.3 or above, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.54: Errors occurred at the check digits and cutoff bits in the encoder control domain

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using Motion Perfect 5.3 or above, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.58: Information such as encoder zone phase is empty or incorrect

Possible causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.59: Information such as the motor body in the second area of the encoder is empty or wrong

Possible causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.65: Location overflow alarm

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates too much	Try to reduce the acceleration of the command before running.	With the EtherCAT command, the position command acceleration is reduced.
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.70: DC synchronization error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication.	_	Reboot the drive to re- establish EtherCAT communication.

A.71: SM Event synchronization event premature

Possible causes	Confirm the method	Action
EtherCAT communication error due to noise.	_	Check the EtherCAT wiring and implement noise countermeasures.
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.
The EtherCAT communication cable or connector wiring is faulty.	Check the EtherCAT communication cables and connector wiring.	Modify the wiring.

A.72: SM Event synchronization event timed out

Possible causes	Confirm the method	Action
EtherCAT communication error due to noise.	_	Check the EtherCAT wiring and implement noise countermeasures.
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.
The EtherCAT communication cable or connector wiring is faulty.	Check the EtherCAT communication cables and connector wiring.	Modify the wiring.

A.73: EtherCAT processor internal error

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.74: The position is set in the Cubic interpolation algorithm with a period error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication	_	Reboot the drive to re- establish EtherCAT communication.

A.75: There was an error setting for the synchronization period

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication	_	Reboot the drive to re- establish EtherCAT communication.
The setting of object 60C2 is not an integer multiple of 125µs	Check the setpoint of object 60C2	Correctly set object 60C2.

A.76: The acceleration object is set to 0 in PP/PV mode

Possible causes	Confirm the method	Action
The setpoints for objects 6083, 6084, 6085 are incorrect	The setpoints for objects 6083, 6084, 6085 (not 0).	Correctly set objects 6083, 6084, 6085.

A.77: OP mode process data watchdog communication timed out

Possible causes	Confirm the method	Action
Detects whether the master controller sends process data properly	The data transmission interval is detected by the wireshark packet capture software	Reboot the drive to re- establish EtherCAT communication.
Whether the network cable is loose	Check whether the network cable is plugged in tightly	Reseat the network cable

A.81: The motor UVW wiring is wrong

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground	It is possible that the motor is faulty. Replace the motor.
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.82: The motor type does not match

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity。	Match the capacity of the drive to the motor.

A.83: The motor is operating abnormally

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.

Possible causes	Confirm the method	Action
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.F0: Internal logic exceptions

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

Gr.2 Alarm

A.15: The regenerative resistance is damaged

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	Set the correct values for Pn535 and Pn536.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1A: The charging resistance is overloaded

Possible causes	Confirm the method	Action
The input power supply is unstable	Measure and confirm the status of the input power supply.	Ensure that the input power supply is stable.
Power is turned on and off too frequently	_	Extend the interval between power on and off or reduce the frequency of power on and off.

A.1B: The DB braking circuit is damaged

Possible causes	Confirm the method	Action
The motor is driven by an external force	Confirm the health status.	Do not drive the motor by external force.

Possible causes	Confirm the method	Action
The rotational or running energy at the time the DB is stopped exceeds the capacity of the DB resistance	The DB usage frequency is confirmed by the DB resistor power dissipation.	Try the following measures. Reduce the command speed of the motor. Adjust the moment of inertia or mass ratio. Reduce the number of DB stops.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.20: The main loop power line is out of phase

Possible causes	Confirm the method	Action
Poor wiring of three-phase wires	Confirm the power wiring.	Confirm if there is a problem with the power wiring.
The three-phase power supply is unbalanced	Measure the voltage of each phase of a three-phase power supply.	Corrects the imbalance of the power supply (reversing phase).
A single-phase AC power supply input (Pn007.1 = 0) is not set and a single-phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.33: USB Power Supply Exceptions

Cause	Way of confirmation	Solution
USB cable is damaged	Confirm USB cable	Replace the USB drive
Drive failure	If the alarm still occurs when the USB cable is replaced, the drive may be faulty	Replace the drive

A.49: Multi-turn or Single-turn Data Exception Detected

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	• Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

A.4A: Excessive Encoder Temperature

Cause	Way of confirmation	Solution
High ambient temperature of the motor	Measure the ambient temperature of the motor.	Adjust the ambient temperature of the motor to below 40°C.
Motor running at a load in excess of the rated value	Confirm load by cumulative load factor.	Adjust the load of the motor before running to a value within the rated value.
Encoder failure	Re-apply power to the drive. If the alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

10.2.3 Warnings

A.1C: Fan Disconnection Alarm

Cause	Way of confirmation	Solution
Fan is disconnected	Confirm if the fan is working	Confirm if the internal fan is wired correctly
Fan is damaged	Fan does not work even after correct wiring	Replace the drive

A.33: USB Power Supply Exceptions

Cause	Way of confirmation	Solution
USB cable is damaged	Confirm USB cable	Replace the USB drive
Drive failure	If the alarm still occurs when the USB cable is replaced, the drive may be faulty	Replace the drive

A.49: Multi-turn or Single-turn Data Exception Detected

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	• Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

A.4B: Absolute Encoder Battery Undervoltage (Tamagawa)

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

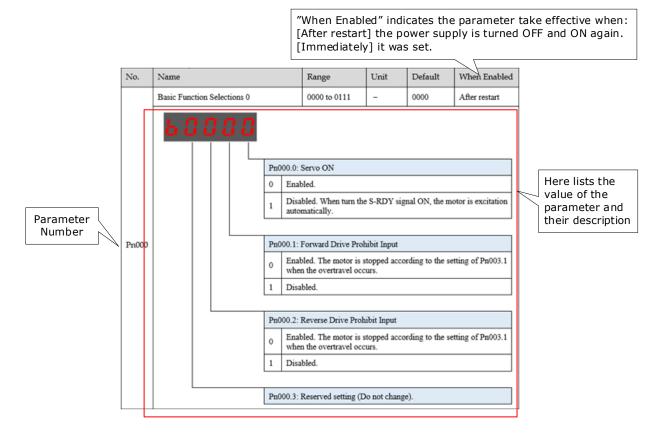
A.D5: Fan Disconnection Warning

Cause	Way of confirmation	Solution
Poor fan wiring	Confirm if the fan is working	Confirm if the internal fan is wired correctly

A.D7: Warning for Reaching Soft Limit Positive Limit

Cause	Way of confirmation	Solution
The current position of the motor is outside the limits in this mode	Compare the current motor position Un009 with the position limits (Pn325,Pn325) to determine if the limits are exceeded	Enabling servo into the limits

A.D8: Warning for Reaching Soft Limit Reverse Limit


Cause	Way of confirmation	Solution
The current position of the motor is outside the limits in PCP mode	Compare the current motor position Un009 with the position limits (Pn325,Pn325) to determine if the limits are exceeded	Enabling servo into the limits

A.D9: Origin Error Warning

Cause	Way of confirmation	Solution
Loss of stored origin	Confirm if the origin values stored in Un035 and Un036 are correct	 When Pn689.2 = 1, switch on the Storing Origin function Use multiturn encoder. When Pn002.2=1, use the multiturn encoder as absolute

Chapter 11 Parameters

11.1 Interpreting the Parameter Lists

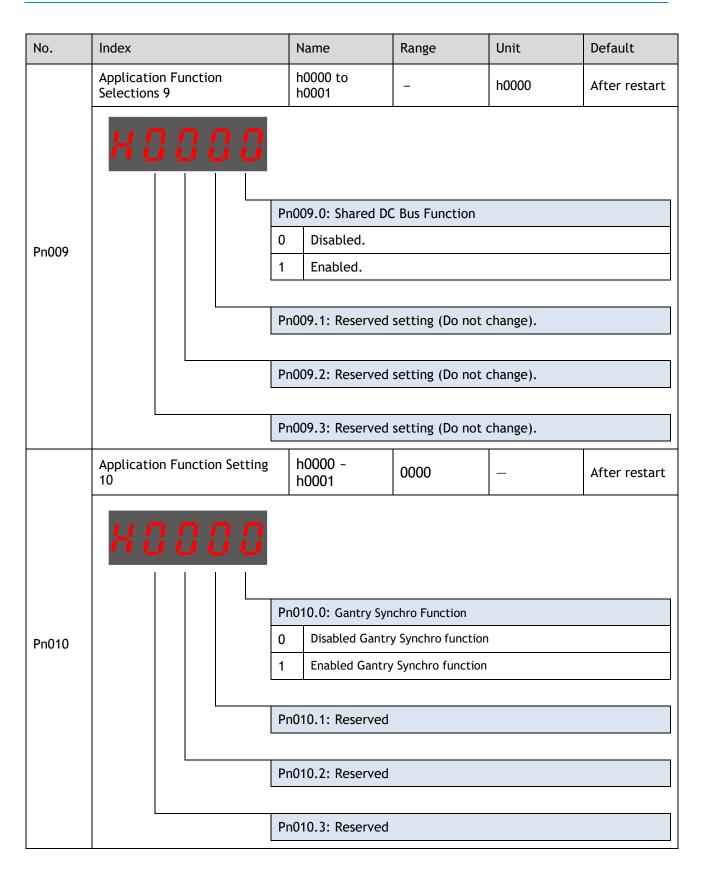
11.2 Parameters Detailed

No.	Index		١	lame	Range	Unit	Default			
	Basic Function Se	lections 0		00000 to 00111	_	b0000	After restart			
Pn000	<u> </u>		Pn0U.0: Servo ON 0 External S-ON Enabled. 1 External S-ON disabled. Servo motor excitation signal is turned ON automatically after S/RDY is output. Pn0UL1: Forward Drive Prohibit Input External P-OT enabled. Operate in the time sequence setting in Pn004.0 when							
		_	1		travel limit occurs. External P-OT Disabled.					
			Pn0	00.2: Reverse D	rive Prohibit Inp	out				
			•	External N-OT						
			0	Operate in the travel limit of	ne time sequen ccurs.	ce setting in P	n004.0 when			
			1	Disabled.						
		_								
			Pn000.3: Reserved setting (Do not change).							

No.	Index		Name	Range	Unit	Default		
	Reserved setting (Do not change).		b0000 to b1111	-	b0000	After restart		
Pn001		0	CW, clockwise 001.1: Analogue Sets the valu torque contro Use the small Analogue volt	-clockwise rotat e rotation in the Speed Limit Ena e of Pn406 as t	tion in the positi positive directi bled the speed limit d value correspondent	on value during onding to the alue of Pn406		
		Pn(001.2: Analogue	Torque Limit En	abled			
		0	Sets Pn401~Pr	1404 as torque li	imit.			
		1 Sets the value corresponding to Tref input Analo as torque limit.						
		Pn(001.3: 2nd Elect	ronic Gear Enab	led			
		0	2nd electroni switch P/PI	c gear is disab	led, PCON sign	al is used to		
		1	2nd electronic 2nd electronic	c gear is enableo c gear.	d, PCON signal i	s only used as		

No.	Index	١	lame	Range	Unit	Default		
	Application Function Selections 2		00000 to 0100	-	Ь0000	After restart		
Pn002		Pn00 Enco 0	02.1: Selection oders Alarm A.48 battery volta Alarm A.48 battery volt when the b operation	occurs when T age is below 3.0° occurs when T age is below 3	anism for Tamag Tamagawa prote V Tamagawa prote .0V, and Alarm is below 3V d	ocol encoder ocol encoder A.4b occurs		
		0	0 Use the encoder as an absolute encoder.					
		1	Use the encod	ler as an increm	ental encoder.			
		Pn0	02.3: Reserved	setting (Do not	change).			

No.	Index	1	Name	Range	Unit	Default
	Application Function Selections 3		h0000 to h1032	-	h0000	After restart
Pn003		Act 0 1 2 PnC 0 1 2 3	DB braking sto Stops freely a 003.1: Motor Sto DB brake stop Stops freely a Reverse braking	dynamic brake a ops and stays DB nd remains free pping Method fo s, and remains f nd remains free ng stops, and ma ng stops, and re	nd then let the after stop after stopping r Overtravel free after stopping after stopping aintains zero cla mains free after	Motor coast. Motor coast.
		PnC 0	Disabled.	Ennancement		
				function can	enhance the Mo	otor load for
		1	instantaneous	more than 2 tir nditions that rec	nes rated load,	which can be


No.	Index		Name	Range	Unit	Default
	Application Function Selections 4		h0000 to h3425	_	h0000	After restart
Pn004		Pn(0 1 2 3 4 5	004.0: Servo OFF Motor stopped the motor wil Motor is runni Servo OFF: overtravel occ Servo OFF: m overtravel occ Servo OFF: dy When overtra motor enters Regards it as f 004.1: Deviation Reset to zero Reserved sett	d by dynamic l be free; ing freely unt motor stopp curs: Reverse notor is runn curs: Reverse mamic brake avel occurs: the zero clan the Warning, Counter Clea when Servo i ing (Do not cl	brake. After the il it stops. ed by dynamic braking stops. ing freely until braking stops. stopped. Reverse braking op state. and the Motor w ar in Local Contr s OFF or STO is a nange).	e motor stopped, c brake. When it stops. When g stops and the rill run properly.
		Pn	004.2: Reference	e pulse form		
		0	SIGN + PULS			
		1	CW + CCW			
		2	A + B (×1)			
		3	A + B (×2)			
		4	A + B (×4)			
		Pn	004.3: Inverses p	oulse		
		0			e and SIGN referer	ice.
		1	Do not inverse	PULS reference	e; Inverses SIGN re	ference.
		2	Inverse PULS re	eference; Do no	ot inverse SIGN ref	erence.
		3	Inverse PULS re	eference and SI	GN reference.	

No.	Index	Name	Range	Unit	Default
Pn005	Application Function Selections 5	h0000 to h33D3	-	h0010	After restart

188 18		
		5.0: Internal Torque Feedforward Method
	0	Use the general internal torque feedforward.
	1	Reserved.
	2	Use the high-speed internal torque feedforward. Reserved.
	5	Kesel veu.
	Pn00 ^p	5.1: Local Control Method
		Speed control (Analogue reference): use PI control when PCON is OFF, and
	0	use P control when PCON is ON.
	1	Position control (pulse train reference): use PI control when PCON is OFF, and use P control when PCON is ON.
	2	Torque control: PCON is invalid.
		Speed control (contact reference) \leftrightarrow speed control (zero reference):
	3	switch to the speed control (zero reference)when PCON, PCL and NCL are OFF
	4	Speed control (contact reference) \leftrightarrow speed control (Analogue reference): switch to the speed control (Analogue reference) when PCON, PCL and NCL are OFF.
	5	Speed control (contact reference) \leftrightarrow position control (pulse train reference): switch to the position control (pulse train reference) when the PCON, PCL and NCL signals are OFF.
	6	Speed control (contact reference) \leftrightarrow Torque control (Analogue reference): switch to the torque control (Analogue reference) when the PCON, PCL and NCL signals are OFF.
	7	Position control (pulse train reference) ↔ speed control (Analogue reference): when PCON is OFF, position control (pulse train reference) is valid; when PCON is ON, speed control (Analogue reference) is valid.
	8	Position control (pulse train reference) \leftrightarrow Torque control (Analogue reference): When PCON is OFF, position control (pulse train reference) is valid; when PCON is ON, torque control is valid.
	9	Torque control (Analogue reference) ↔ speed control (Analogue reference): When PCON is OFF, torque control is valid; when PCON is ON, speed control (Analogue reference) is valid.
	A	Speed control (Analogue reference) \leftrightarrow zero clamp control: When PCON is OFF, speed control (Analogue reference) is valid; when PCON is ON, zero clamp control is used.
	В	Position control (pulse train reference) \leftrightarrow Position control (pulse prohibited): When PCON is OFF, position control (pulse train reference) is valid; when PCON is ON, position control (pulse prohibited) is valid.
	С	Position control (PCP control)
	D	Speed control (parameter reference): PCON is invalid.
	Pn005	2: Torque Feedforward Method
	0	Use the internal torque feedforward.
	1	Use the model following control torque feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.
	2	Controller setting speed feed-forward: valid in bus control mode, and set by object 0x60B1.
	3	Speed feed-forward generated by the Cubic interpolation algorithm: valid after the Cubic interpolation algorithm is selected through the object 0x60C0 in bus control mode.
	Pn005	5.3: Speed Feedforward Method

No.	Index		Name	Range	Unit	Default		
		0 1 2 3	Use the model following control speed feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.					
	Application Function Selections 6		h0000 to h0001	_	h0000	After restart		
		Pn	006.0: Bus Selec	tion				
Pn006		0 Non-bus, set the control mode via Pn005.11 CANOpen						
		Pn	006.1: Reserved	setting (Do not	change).			
		Pn	006.2: Reserved	setting (Do not	change).			
		Pn	006.3: Reserved	setting (Do not	change).			

No.	Index		Name	Range	Unit	Default
	Application Function Selections 7		h0000 to h1120	-	h0000	After restart
Pn007		Pn 0 1 2 Pn 0 1	007.0: Reserved 007.1: Power Sup Single-phase / DC 007.2: Torque Li Disabled. Enabled. 007.3: AC Supply	oply Selection AC AC mit Action When		Dccurs
		0	50Hz			
		1	60Hz			
D-000	Initial Display Selection Whe Power On	en	0 to 9999	-	9999	After restart
Pn008	Set the displayed Un Numbe For example, set this param				powering on the	e device.

No.	Index	Name	Range	Unit	Default		
Pn011	Application Function Setting 11	0000 ~ 0001	0000	_	After restart		
	X 8 8 8 8 8	Pn011.0: Gantry Syr	nchro Homing Don	e Sign			
			-				
		I Homing done					
	1	Pn010.1: Reserved					
	F	Pn011.2: Reserved					
	F	Pn011.3: Reserved	T	1			
Pn012	Open Threshold of Synchronous Adjustment	0 ~ 10000	pulse	0	After restart		
	-						
Pn013	Alarm Threshold for Excessive Position Error	0 ~ 65535	pulse	10000	After restart		
	-						

No.	Index	Nar	ne	Ran	ige	Unit	Default
	Application Function Setting 14		h0000 ~ h00	10	_	h0000	After restart
Pn014	Pr 0 1 Pr 0 1	014. E 014. C C	0: Reserved 1: PCP Contro dge evel 2: PCP Contro ontact 0 can b ontact 0 canno 3: Reserved	ol Ca De tr	ontact 0 Trig iggered		
Pn015	Application Function Setting 15	1014.	h0000 ~ h00	01	0000		After
				.01	0000		restart
	Pr	alid u No Er n015.	0: Soft Limit Inder the PCP on-enabling the nabling the sor 1: Reserved 2: Auto Vibra 3: Auto-tunin	fund ne so ft lir tion	ction oft-limit fun nit functior Suppression		100.0 = 3)
Pn100	Application Function Setting 100		h0001 ~ h110		_	h0001	After restart

No.	Index		Name	Range	Unit	Default			
	Pn100.0: Parametric Tuning Mode Selection								
	1 Turning not required								
		2 Reserved							
		3		ter auto-tuning load inertia Pn1		g the correct			
		4	Reserved						
		5	Manual tuning load inertia Pn	(requires settir 106)	ng the correct p	percentage of			
	Pn100.1: Reserved Pn100.2: Auto Vibration Suppression Selection								
		0	Not used						
		1	used						
		Pn	100.3: Auto-tunii	ng Type Selectio	n (valid when P	n100.0 = 3)			
		0	Standard: shor	t positioning tin	ne, but prone to	overshoot			
		1	Stable: smooth	n positioning, bu	t long positionir	ng times			
	Servo Rigidity Setting		0 ~ 500	Hz	40	Immediately			
Pn101	This parameter determines t The performance can be imp		•		•	ation occurs.			
D (00	Speed Loop Gain		1 to 10000	rad/s	500	Immediately			
Pn102	This parameter determines the bandwidth of the speed loop.								
Dn102	Speed Loop Integral Time		1 to 5000	0.1ms	125	Immediately			
Pn103	Reduce this value can shorten positioning time and speed response time.								
	Position Loop Gain0 to 10001/s40Immediate								
Pn104	This parameter determines the bandwidth of position loop. Increase this value can improve the stiffness of positioning, decrease if the system vibrates								

No.	Index	Name	Range	Unit	Default			
	Torque Reference Filter Time	0 to 2500	50	0.01ms	Immediately			
Pn105	This parameter determines the bandwidth of torque reference filter, the filter is used to filter out the noise in torque reference.							
Pn106	Load Inertia Percentage	0 to 9999	%	0	Immediately			
PIIIO	This value should be set to the	percentage of loa	ad inertia and I	Motor inertia.				
	Second Speed Loop Gain	1 to 10000	rad/s	250	Immediately			
Pn107	_							
Pn108	Second Speed Loop Integral Time	1 to 5000	rad/s	200	Immediately			
11100	-							
- / 00	Second Position Loop Gain	0 to 1000	1/s	40	Immediately			
Pn109	_							
Pn110	Second Torque Reference Filter Time	0 to 2500	0.01ms	100	Immediately			
	_							
	Speed Feedforward	0 to 100	%	0	Immediately			
Pn112	This value is a percentage of the internal speed feedforward. This value is available when the internal speed feedforward is selected (Pn005.3=0).							
D= 442	Speed Feedforward Filter Time	0 to 640	0.1ms	0	Immediately			
Pn113	This parameter determines the bandwidth of internal speed feedforward filter. The filter is used to filter out the noise in internal speed feedforward.							
	Torque Feedforward	0 to 100	%	0	Immediately			
Pn114	This value is a percentage of the internal torque feedforward. This value is available when the internal torque feedforward is selected (Pn005.2=0).							
	Torque Feedforward Filter Time	0 to 640	0.1ms	0	Immediately			
Pn115	This parameter determines the bandwidth of internal torque feedforward filter. The filter is used to filter out the noise in internal torque feedforward.							

No.	Index	Name	Range	Unit	Default				
	P/PI Switch Mode	0 to 4	_	0	After restart				
Pn116	 [0] Use torque reference as the condition (threshold setting: Pn117). [1] Use position deviation counter as the condition (threshold setting: Pn118). [2] Use acceleration reference as the condition (threshold setting: Pn119). [3] Use the speed reference as the condition (threshold setting: Pn120). [4] Fixed to PI Control. 								
Dn117	Torque Reference Threshold for P/PI Switch	0 to 300	%	200	Immediately				
Pn117	The threshold is used to switch torque reference.	speed controller	from PI to P. Th	is value is a per	centage of				
Pn118	Deviation Counter Threshold for P/PI Switch	0 to 10000	pulse	0	Immediately				
	The threshold is used to switch speed controller from PI to P. This value is a pulse number.								
D 440	Acceleration Reference Threshold for P/PI Switch	0 to 3000	10rpm/s	0	Immediately				
Pn119	The threshold is used to switch speed controller from PI to P. This value is an acceleration reference.								
Pn120	Speed Reference Threshold for P/PI Switch	0 to 10000	rpm	0	Immediately				
	The threshold is used to switch speed controller from PI to P. This value is a speed reference.								
	Gain Switch Mode	0 to 10	-	0	After restart				
Pn121	 [0] Fixed to first group gains. [1] Use external signal (G-SEL) as the condition. [2] Use torque reference as the condition (threshold setting: Pn117). [3] Use position deviation counter as the condition (threshold setting: Pn118). [4] Use acceleration as the condition (threshold setting: Pn119). [5] Use speed reference as the condition (threshold setting: Pn120). [6] Use position reference as the condition (threshold setting: Pn123). [7] Use actual speed as the condition (threshold setting: Pn124). [8] Use position reference (Pn123) and actual speed (Pn124) as the condition. [9] Fixed to second group gains. [10] Use positioning completed flag as the condition. 								
D= 422	Delay Time for Gain Switch	0 to 20000	0.1 ms	0	Immediately				
Pn122	The delay time for gain switching	ed.							

No.	Index	Name	Range	Unit	Default				
Pn123	Threshold for Gain Switch	0 to 20000	-	0	Immediately				
	The threshold of speed reference for gain switching.								
	Speed Threshold for Gain Switch	0 to 2000	rpm	0	Immediately				
Pn124	This parameter is available only condition (Pn121=8).	v when using posi	tion reference	and actual sp	peed as the				
Pn125	Ramp Time for Position Loop Gain Switch	0 to 20000	0.1 ms	0	Immediately				
	Ramp time for gain switching, i	t is only available	e to position lo	op gain.					
Pn126	Hysteresis for Gain Switch	0 to 20000	_	0	Immediately				
PIIIZO	Hysteresis of gain switching conditions. It is used to prevent gain switching frequently.								
	Low Speed Filter	0 to 100	1 cycle	0	Immediately				
Pn127	This parameter determines the performance of the filter for low speed measurement. The filter will filter out the noise in low speed, but the measured speed has significant delay if this value is large.								
D=120	Coulomb Friction Compensation	0 to 3000	0.1%Tn	0	Immediately				
Pn130	This parameter is used to compensate coulomb friction. The value is the permillage of coulomb friction and Motor rated torque.								
D. 424	Speed Dead Band for Coulomb Friction Compensation	0 to 100	rpm	0	Immediately				
Pn131	To set a dead band to disable coulomb friction compensation. It is used to prevent vibration at zero speed.								
Pn132	Viscous Friction Compensation	0 to 1000	0.1%Tn / 1000rpm	0	Immediately				
	Sticking damp which is in direct proportion to speed.								
	Encoder Speed Filter Time	0 to 30000	0.01 ms	4	Immediately				
Pn135	To set a proper time for smoothing the changes in the feedback speed to reduce vibration. This parameter is available when the instantaneous speed is not used as the speed feedback (Pn162=0).								

No.	Index	N	ame	Rar	ige	Unit	Default	
Pn136	Tuning-free Rigidity		0~500		50	Hz	Immediatel y	
	To set the servo rigidity in tuning-free mode							
Pn137	Tuning-free Disturbance Observer bandwidth		0~1000		90	Hz	Immediatel y	
	To set the scale factor of the disturbance observer in tuning-free mode							
Pn138	Percentage of Tuning-free Disturbance Compensation		0~100		100	%	Immediatel y	
	To set the scale factor of th	ne distu	rbance observe	er in	tuning-free	mode		
Pn139	Tuning-free Load Inertia %		0~9999		250	%	Immediatel y	
	To set the percentage of lo	ad iner	tia in the no-tu	ining	mode			
Pn140	Tuning-free Torque Filterin Constants	g Time	0~2500		100	0.01ms	Immediatel y	
	To set the torque filter time	e const	ant in tuning-fi	ree n	node			
	Application Function Settin 150	g h	0000 ~ h0002	_		h0000	After restart	
Pn150		0 1 2 Pn15 Pn15	50.0: Model Fol Do not use. Use the model Use the model suppression. 50.1: Reserved 50.2: Reserved	folla lel f setti	owing contr following c ng (Do not ng (Do not	ol. ontrol and loa change). change).	nd oscillation	
	Model Following Control Ga	uin 1	0 to 1000	1/5		50	Immediately	
Pn151	Model Following Control Gain10 to 10001/s50ImmediatedThis parameter determines the response characteristic of the servo system. If you increase the setting of the model following control gain, the response characteristic will improve and the positioning time will be shortened.Immediated						ou increase the	

No.	Index	Name	Range	Unit	Default			
Pn152	Model Following Control Gain Correction	20 to 500	%	100	Immediately			
	This parameter is used for correcting the setting of the model following control gain.							
	Model Following Control Speed Feedforward	0 to 200	%	100	Immediately			
Pn153	This parameter is used for fine tuning the speed feedforward value output by the model following control gain. If you increase this setting, the bias can be reduced but overshooting will be likely to occur.							
	Model Following Control Torque Feedforward	0 to 200	%	100	Immediately			
Pn154	This parameter is used for fine following control gain. If you in improved but overshooting will	crease this settin	g, the response					
	Load Oscillation Frequency	50 to 500	0.1Hz	100	Immediately			
Pn155	In general, this setting is the anti-resonance frequency of the two-mass servo system.							
D-454	Filter Time for Load Oscillation Suppression	2 to 500	0.1ms	10	Immediately			
Pn156	If you increase this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.							
	Limit for Load Oscillation Suppression	0 to 1000	rpm	100	Immediately			
Pn157	To set a compensation limiting for the jitter suppression at speed feedforward.							
	If you decrease this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.							
	Load Torque Compensation	0 to 100	%	0	Immediately			
Pn160	This parameter is a coefficient (percentage) to compensate load torque. Increase this value can improve load disturbance rejection performance but may cause vibration.							
	Load Torque Observer Gain	0 to 1000	Hz	200	Immediately			
Pn161	This parameter is used to adjust the response characteristic of the load observer.							
	Feedback Speed Selection	0 to 1	-	0	After restart			
Pn162	[0] Use encoder speed as the feedback speed. [1] Use observed speed as the feedback speed.							

No.	Index	Name	Range	Unit	Default
D	Turns for PJOG0	-50 to 50	rotation	5	Immediately
Pn164	-				
	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediately
Pn165	-				
Pn166	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediately
FILIO	-		1		
Pn167	Stop Time for PJOG0	100 to 10000	ms	1000	Immediately
FIIIO	_				
Pn168	Turns for PJOG1	-50 to 50	rotation	-5	Immediately
PIIIOO	-		-		
Pn169	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediately
PIII09	-		1		
Pn170	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediately
11170	-				
Pn171	Stop Time for PJOG1	100 to 10000	ms	1000	Immediately
FIII7I	-				
	Turns for Inertia Identification	0 to 1	_	0	Immediately
Pn172	The number of turns the motor [0] 8 rotations. [1] 4 rotations.	runs in the positi	ve direction whe	en offline inertia	a is identified
Pn173	Frequency of Vibration Suppression Filter	100 to 2000	Hz	2000	Immediately
	-				
Pn174	Adjust Bandwidth of Vibration Suppression Filter	1 to 100	_	30	Immediately
	-				
D (75	Vibration Suppression	0 to 500	_	100	Immediately
Pn175	-				

No.	Index	Name	Range	Unit	Default			
Pn176	Lowpass Filter Time for Vibration Suppression	0 to 50	0.1ms	0	Immediately			
	_							
Pn177	Highpass Filter Time for Vibration Suppression	0 to 1000	0.1ms	1000	Immediately			
	-	-	-					
Pn178	Damping of Vibration Suppression Filter	0 to 500	_	100	Immediately			
	-							
Pn179	Amplitude Threshold for Vibration Detection	5 to 500	-	100	Immediately			
	This parameter is used for automatic vibration suppression.							
Pn180	Frequency Threshold for Vibration Detection	0 to 100	Hz	100	Immediately			
	This parameter is used for automatic vibration suppression.							
Pn181	Frequency of Notch Filter 1	50 to 5000	Hz	5000	Immediately			
PIIIOI	_							
Pn182	Depth of Notch Filter 1	0 to 23	_	0	Immediately			
11102	-							
Pn183	Width of Notch Filter 1	0 to 15	_	2	Immediately			
FIIIOS	_							
Dp194	Frequency of Notch Filter 2	50 to 5000	Hz	5000	Immediately			
Pn184	-							
D 4.05	Depth of Notch Filter 2	0 to 23	_	0	Immediately			
Pn185	_							
D=101	Width of Notch Filter 2	0 to 15	_	2	Immediately			
Pn186	_							

No.	Index	Name	Range	Unit	Default			
5 4 6 7	Frequency of Notch Filter 3	50 to 5000	Hz	5000	Immediately			
Pn187	-							
D 400	Depth of Notch Filter 3	0 to 23	_	0	Immediately			
Pn188	-							
D=190	Width of Notch Filter 3	0 to 15	_	2	Immediately			
Pn189	_							
Pn190	Auto Vibration Suppression Status	0 ~ F	_	0	Immediately			
	_							
Pn191	Auto Vibration Suppression Amplitude	0 ~ 1000	_	0	Immediately			
	_	1						
	PG Divided Ratio	16 to 16384	pulse	16384	After restart			
Pn200	Analogue encoder output orthogonal difference pulses. The meaning of this value is the number of Analogue encoder output orthogonal difference pulses per one motor rotation.							
	16-bit 1st Electronic Gear Numerator	1 to 100000	-	1	After restart			
Pn201	The 16-bit electronic gear parameters are valid when Pn009.2=0.							
	The electronic gear enables the distance, so the host controller pulses. In fact, it is the setting pulses.	doesn't change th	ne mechanical d	eceleration ratio	o and encoder			
	16-bit 1st Electronic Gear Denominator	1 to 100000	_	1	After restart			
Pn202	When setting Pn009.2 to 0, it is The use of the electronic gear a motor movement so that the up reduction ratio and the number or dividing the command pulses	allows the comma oper unit does not of encoder pulse	nd pulses to cor have to pay att	respond to the a ention to the m	amount of echanical			
	16-bit 2 nd Electronic Gear Numerator	1 to 100000	_	1	After restart			
Pn203	When setting Pn009.2 to 0, it is							
	The use of the electronic gear a motor movement so that the up reduction ratio and the number or dividing the command pulses	oper unit does not of encoder pulse	have to pay att	ention to the m	echanical			

No.	Index	Name	Range	Unit	Default			
D. 204	Position Reference Filter Time Constant	0 to 32767	0.1 ms	0	Immediately			
Pn204	This value is used to smooth the input pulses. The effect of smoothness is better when the value is higher, but lag will occur if the value is too large.							
Pn205	Position Reference Filter Form Constant	0 to 1	_	0	After restart			
	0: 1st order filter1: 2nd order filter							
Pn207	Locked-rotor Torque during Homing	10 to 300	%	100	Immediately			
	The value limits the torque duri	ng homing mode;	Unit: % rated to	orque.				
Pn208	Locked-rotor Torque Time during Homing	4 to 30000	0.1 ms	4	Immediately			
	The allowed time for the stalled	d during homing n	node. Unit : 0.1r	ns				

No.	Index	Name	Range	Unit	Default		
		n210.0: 2nd Encod	der Enabling Bit				
	0						
	1	Use the 2 nd en	coder				
		n210.1: Use the 2 lot	ing Output or				
Pn210	C	Use the first e	ncoder frequenc	y dividing outpu	t		
		Use the second	d encoder freque	ency dividing out	put		
				Dhasa Calast			
		n210.2: PG Freque		se Phase Select	lon		
	1		se of the frequer	ncv-dividing puls	se l		
		'	· ·				
	P	n210.3: 2nd Enco	der Pulse Countin	ng Direction			
	C	0 [0] Unchanged					
	1		1				
Pn211	Application Function Setting 211	Ь0000 ~ Ь0001	0001	_	After restart		
Pn300	Analogue Speed Reference Input Gain	0 to 3000	150	rpm/v	Immediately		
	The corresponding speed to 1V	Analogue input.	-				
	Analogue Speed Given Zero Bias	-1000 to 1000	10 mV	0	Immediately		
Pn301	This parameter is used to set zero bias of Analogue speed given, and it is related with the Analogue speed reference input gain (Pn300). The Analogue speed reference after setting is calculated as follows:						
	Analogue speed reference=(Speed reference input Analogue voltage —Analogue speed reference zero bias)×Analogue speed reference input gain						
Pn302	Analogue Speed Command Gain 2	0 ~ 3000	150	rpm/v	Immediately		
	The speed value corresponding	to Analogue inpu	t per volt.				

No.	Index	Name	Range	Unit	Default				
	Inner Speed Reference	-6000 to 6000	rpm	500	Immediately				
Pn304	04 To set the inner Motor speed reference. This setting is available when servo is in inner speed control mode (Pn006.0 = 0 and Pn0 1).								
	Jogging Speed	0 to 6000	rpm	500	Immediately				
Pn305	To set a speed for the Motor in JOG operation, and the rotation direction is determined by the reference.								
5.20/	Soft Start Acceleration Time	0 to 10000	ms	0	Immediately				
Pn306	The time to accelerate the mo	tor to 1000rpm on	slope speed ref	erence.	Immediately				
Pn307	Soft Start Deceleration Time	0 to 10000	ms	0	Immediately				
Pn307	The time to decelerate to 1000rpm on slope speed reference.								
D 000	Speed Reference Filter Time	0 to 10000	ms	0	Immediately				
Pn308	To set speed reference filter ti	speed reference filter time.							
	S-Curve Rise Time	0 to 10000	ms	0	Immediately				
Pn309	To set a rise time for transiting	from one speed p	point to another	speed point in t	the S-curve.				
	Speed Reference Smooth Mode Selection	0 to 3	_	0	After restart				
Pn310	[0] Ramp [1] S-Curve [2] Primary filtering [3] Secondary filtering								
	S-Curve Selection	0 to 3	_	0	After restart				
Pn311	To set the transition form of th	e S-curve.	1	1	1				

No.	Index			Name		Range	Unit	Defa	ult
	Internal Speed	1		-6000	to 6000	rpm	100	Imme	ediately
	The settings of conditions for e					n005.1=3, 4, 5	or 6. The tabl	le below li	sts the
	Input Signal				Speed Se	loction			
	/P-CON	/PCL	/N	CL	speed se	lection			
		OFF(H)	OF	F(H)	Zero spee methods	ed or switch t	o other contro	ι	
Pn316	OFF(H)	OFF(H)	ON	I(L)	Internal S	Speed 1			
		ON(L)	OF	F(H)	Internal S	Speed 2			
		ON(L)	ON	I(L)	Internal S	Speed 3			
		OFF(H)	OF	F(H)	Internal S	Speed 4			
	ON(L)	OFF(H)	ON	I(L)	Internal S	Speed 5			
		ON(L)	OF	F(H)	Internal S	Speed 6			
		ON(L)	ON	I(L)	Internal S	Speed 7			
D 247	Internal Speed	2		-6000	to 6000	rpm	200	Imme	ediately
Pn317	Refer to the de	scriptions in	Pn3	16.					
D. 240	Internal Speed	3		-6000 to 6000 rpm 300 Immediately					
Pn318	Refer to the de	scriptions in	Pn3	16.					
D=240	Internal Speed	4		-6000	to 6000	rpm	-100	Imme	ediately
Pn319	Refer to the de	scriptions in	Pn3	16.					
B 330	Internal Speed	5		-6000	to 6000	rpm	-200	Imme	ediately
Pn320	Refer to the de	scriptions in	Pn3	16.					
D224	Internal Speed	6		-6000	to 6000	rpm	-300	Imme	ediately
Pn321	Refer to the de	scriptions in	Pn3	16.					
D. 200	Internal Speed	7		-6000	to 6000	rpm	500	Imme	ediately
Pn322	Refer to the de	scriptions in	Pn3	16.					
Pn323	Overspeed Dete Threshold	ection		1 to 8	8000	rpm	8000	Imme	ediately
-	A.03 alarm occu	urs if the Mc	otor \	velocity	/ exceeds t	his threshold			

No.	Index	Name	Range	Unit	Default
Pn324	PCP Controls Time of Stopping Acceleration	0 to 10000	ms	100	Immediately
	The time required for trapezoid	lal deceleration o	f 1000 rpm unde	er the indexing	function.
Pn325	Max. Limit Value of Soft Limit	-	200000000	Р	Immediately
PII323	The maximum limit value of sof	t limit in absolute	e position		
D=226	Min. Limit Value of Soft Limit	-	-200000000	Ρ	Immediately
Pn326	The minimum limit value in abs	olute position			
	TouchProbe Input Port Allocation	0000 to 0022	_	0010	After restart
Pn331		Allocate TP2 s Do not allocat n331.1: CN1-19 Al Allocate TP1 s Allocate TP2 s	ignal to CN1-18 ignal to CN1-18 e Touch Probe s		

No.	Index	Name	Range	Unit	Default		
Pn332	Touch Probe Digital Input Filtering Time	0 to 200	10ns	100	After restart		
	-						
	TouchProbe Input Port Signal Inverts	0000 to 0011	-	0000	After restart		
		n333.0: selection Not inverted (1	of CN1-18 Signa valid during low				
Pn333	1	Inverted (valio	l during high lev	el)			
	P	n333.1: Signal inv	erts selection of	⁻ CN1-19			
	0	-	valid during low				
	1	Inverted (valio	l during high lev	el)			
	P	n333.2: Reserved					
	P	n333.3: Reserved					
D= 400	Analogue Torque Reference Gain	10 to 100	0.1V/100%	33	Immediately		
Pn400	This parameter sets the voltage torque.	value of the Ana	logue input requ	ired to reach th	ne rated		
	Forward Torque Internal Limit	0 to 350	%	350	Immediately		
Pn401	The value of motor output torq actual overload capacity.	ue limit, and the	parameter setti	ng range is base	d on the		
	Reverse Torque Internal Limit	0 to 350	%	300	Immediately		
Pn402	The value of motor output torq actual overload capacity.	ue limit, and the	parameter setti	ng range is base	d on the		
D. (0)	Forward Torque External Limit	0 to 350	%	100	Immediately		
Pn403	The value of motor output torque limit, and the parameter setting range is based on the actual overload capacity.						

No.	Index	Name	Range	Unit	Default		
	Reverse Torque External Limit	0 to 350	%	100	Immediately		
Pn404	The value of motor output torquactual overload capacity.	ue limit, and the	parameter setti	ng range is base	d on the		
	Reverse Brake Torque Limit	0 to 350	%	300	Immediately		
Pn405	The value of motor output torque limit, and the parameter setting range is based on the actual overload capacity.						
Pn406	Torque Limit at Main Circuit Voltage Drop	0 to 100	%	50	Immediately		
	-						
Pn407	Release Time for Torque Limit at Main Circuit Voltage Drop	0 to 1000	ms	100	Immediately		
	-						
Pn408	Speed Limit during Torque Control	0 to 6000	rpm	1500	Immediately		
	-						
	Torque Mode	0 to 1	_	0	Immediately		
Pn409	0: Analogue torque mode 1: Torque contact mode						
	Torque Contact 1	-400 to 400	1/100%	0	Immediately		
Pn410	_						
5 444	Torque Contact 2	-400 to 400	1/100%	0	Immediately		
Pn411	_						
D 110	Torque Contact 3	-400 to 400	1/100%	0	Immediately		
Pn412	_						
D. 112	Torque Contact 4	-400 to 400	1/100%	0	Immediately		
Pn413	_						
Die 44.4	Analogue Torque Command Gain 2	10 ~ 100	0.1V/100%	Pn414	Immediately		
Pn414	The parameter means the volta torque.	ge value of the A	nalogue input re	quired to achiev	ve the rated		

No.	Index	Name	Range	Unit	Default			
Pn415	Analogue Torque Given Zero Bias	-1000 to 1000	10 mv	0	Immediately			
	-							
	Position Arrival Tolerance	0 to 50000	pulse	10	Immediately			
Pn500	The /COIN (Positioning Complet less than this setting.	Positioning Completion) output signal will turn ON when the deviation counter is s setting.						
	Speed Arrival Tolerance	0 to 100	rpm	10	Immediately			
Pn501	The /VCMP (Speed Coincidence between the speed reference a				leviation			
D== E () 2	Zero Clamp Speed	0 to 3000	rpm	10	Immediately			
Pn502	Locks motor at the current posi	tion when the inp	out Analogue spe	eed drops below	this value.			
Pn503	Rotation Status Detection Threshold	0 to 3000	rpm	20	Immediately			
PIIJUJ	N (Rotation Dete	ection) output						
	Position Deviation Counter Overflow Threshold	1 to 83886080	pulse	1	Immediately			
Pn504	It is considered the deviation control the deviation counter exceeds to NOTE: the default setting dependent	this setting.		ın alarm signal o	al outputs when			
	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediately			
	Parameters from Pn505 to Pn508 are available only when the /BK (Brake Output) signal turns ON.							
Pn505	They are used for controlling the holding brake, so that the moving part of the machine cannot move due to gravity or an external force.							
	 If this setting is a positive number, when the servo is ON, the /BK signal will turn ON firstly, and wait for this setting time, then excite the Motor. If the setting is a negative number, when the servo is ON, the Motor can be excited 							
	immediately, and wait for thi				cited			
	Servo OFF Waiting Time	0 to 500	10 ms	0	Immediately			
Pn506	The Servo is OFF when setting it as the /BK output (braking acts.) In this case, the machine may sometimes move slightly under the influence of gravity., depending on its components as well as the characteristics of the brake.							
	Brake Enable Speed Threshold	10 to 100	rpm	100	Immediately			
Pn507	The /BK signal will turn ON whe	en the Motor spee	d is lower than	this setting afte	r the Servo is			

No.	Index			Name	Range	Unit	Default
	Brake Enable W	aiting T	ime	10 to 100	10 ms	50	Immediately
Pn508	•	unes Ol	N as long	en the delay exce as one of the co is satisfied.		•	
	Digital Input Sig 1	nal Allo	cations	h00000000 to h1C1C1C1C	-	03020100	After restart
Pn509		00 01 02 03 04 05 06 07 08 09 0A 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A Pn509 CN1_	S-ON P-CON P-OT ALMRST CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J G-SEL JDPOS-J JDPOS-J JDPOS-J TORQ_S TORQ_S TORQ_S TORQ_S TORQ_S POS1 POS2 POS3 POS4 ANAG_S POS4 ANAG_S	IOG+ IOG- IALT D1 D2 PEED_LIMIT1 PEED_LIMIT2 REV		Pn509.2: Co CN1_16 or vi 00~1A: Same 14. Pn509.3: Co CN1 17 or vi	prresponds to port rtual input bit2 e allocation as CN1- prresponds to port rtual input bit3 e allocation as CN1-

No.	Index			Name	Range	Unit	Default
	Digital Input Sigi 2	nal Allo	cations	h00000000 to h1C1C1C1C	_	07060504	After restart
Pn510		Pn510 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A	S-ON P-CON P-OT N-OT ALMRST CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-F HmRef SHOM ORG ZCLAMP TORQ_J TORQ_J TORQ_S ANLOD POS0 POS1 POS2 POS3 POS4 MDP1	IOG+ IOG- IALT D1 D2 PEED_LIMIT1 PEED_LIMIT2		Pn510.2: Corre CN1_41 or virtu 00~1A: Same al 39. Pn510.3: Corre CN1_42 or virtu	location as CN1-

No.	Index	Name	Range	Unit	Default
	Digital Output Signal Allocations	h0000 to h0ccc	-	0210	After restart
Pn511		0 COIN/VCM 1 TGON 2 S-RDY 3 CLT 4 BK 5 PGC 6 OT 7 RD 8 HOME 9 TCR A R-OUT1 8 R-OUT2 C R-OUT3 Pn511.1: Alloca 0 to B: same as 0 to B: same as	ate signal to CN1 P ate signal to CN1 ate signal to CN1 ate signal to CN1 ate signal to CN1 by the allocation of the all	-05, 06 of CN1-11, 12 -09, 10 of CN1-11, 12	

No.	Index		Name	Range	Unit	Default		
	Digital Input Signals (Lo from Bus Master	w Bits)	b0000 to b1111	_	0000	After restart		
Pn512		0 1 Pr 0 1	1512.0: Select and Not enabled. Enabled. 1512.1: Select and Not enabled. Enabled. 1512.2: Select and Not enabled. Enabled.	d allocate CN-15	through the bu	s master		
		Pr	1512.3: Select and	d allocate CN-17	through the bu	s master		
		0	Not enabled.					
		1	Enabled.					

No.	Index		Name	Range	Unit	Default
	Digital Input Signals (High Bits) from Bus Master		b0000 to b1111	-	0000	After restart
Pn513		0 1 Pr 0 1 Pr 0 1	1513.0: Select and Not enabled. Enabled. 1513.1: Select and Not enabled. Enabled. Not enabled. Enabled. 1513.3: Select and Not enabled. Enabled.	d allocate CN-4 d allocate CN-4	0 through the bu	ıs master
	Input Port Filtering		0 to 1000	1 cycle	1	Immediately
Pn514	To set a filtering time for the input signals. If you increase this setting, the signal changes on the input port will be delayed.					
	Alarm Output Signal Filter Time		0 to 3	2 cycles	1	Immediately
Pn515	To set a filtering time for the form of the form of the set of the setting,		-	ayed.		

No.	Index		Name	Range	Unit	Default		
	Digital Input Sign	al Inverts 1	b0000 to b1111	-	0000	After restart		
	<u> 5 8 8</u>	F C	Pn516.0: CN1-14 inverse selection 0 The signal is not inverted. 1 The signal is inverted.					
		F	Pn516.1: CN1-15 inverse selection					
Pn516		C	0 The signal is not inverted.					
		1	1 The signal is inverted.					
			n516.2: CN1-16 ir					
		C	- J					
		1	The signal is	inverted.				
		F	n516.3: CN1-17 ir	verse selection				
		C	The signal is	not inverted.				
		1	The signal is	inverted.				

No.	Index		Name	Range	Unit	Default	
	Digital Input Signal Inverts 2		0000 to 1111	_	0000	After restart	
	<u>60000</u>	Pn 0 1	517.0: CN1-39 in The signal is r The signal is i	not inverted.			
		Pn	517.1: CN1-40 in	verse selection			
Pn517		0	The signal is n	ot inverted.			
		1	The signal is ir	nverted.			
			517.2: CN1-41 in				
		0	The signal is n				
		1	The signal is ir	nverted.			
		Pn	517.3: CN1-42 in	verse selection			
		0	The signal is n	ot inverted.			
		1	The signal is ir	nverted.			
	Dynamic Braking Time		50 ~ 20000	20000	0.5ms	Immediately	
Pn518	The time required for dynami	ic b	oraking of the mo	tor.			
D 540	Serial Encoder Communicatio Error Tolerance	'n	0 to 10000	1 cycle	3	Immediately	
Pn519	The warning of serial encoder related alarms can be ignored if the alarms occurred within this setting.						
Pn520	Position Arrival Status Detection Time Threshold		0 to 60000	0.1 ms	500	Immediately	
	To set a required time for co	mpl	leting the positio	ning.			

No.	Index		Name	Range	Unit	Default
	Application Function S 521	etting	b0000 to b0011	_	0010	After restart
Pn521		Pr ar 80 0 1 1 0 1 9r 9r 9r	Mask (when A	same alarm ma 15 uses Pn521.0 A15 is masked, a bleeder batter arm. setting (Do not	sk bit Pn521.0; , and A.16 canno the bleeder res y is connected) change).	for drives of ot be masked)
	Motor Overload Detect Start Threshold	tion	100 to 150	%	100	Immediately
Pn525	A04 alarms occurs if th The recommended set This setting is always f					

No.	Index	Name		Range	Unit	Default	
	Digital Output Signal Inverts	b0000 b1111		_	0000	After restart	
Pn528		0 The 1 The Pn528.1: 0 The 1 The Pn528.2: 0 The 1 The Pn528.3: 0 The	e signal is i e signal is i CN1-07, C e signal is i e signal is i e signal is i e signal is i e signal is i	 18 inverse select not inverted. inverted. 0 inverse select not inverted. inverted. 2 inverse select ot inverted. 	ion		
Pn529	Torque Reaches Status Detection Torque Threshold	3 to 3		%	100	Immediately	
	The /TCR signal will be output time is longer than that set in		when the torque output exceeds the setting in Pn529 and the n530.				
Pn530	Torque Detection Output Signal Time	1 to 1	000	ms	10	Immediately	
	The /TCR signal will be outpur time is longer than that set in		ne torque (output exceeds	the setting in Pr	529 and the	
Dp524	Pulse Input Filter Time	10 to	100	10 ns	20	Immediately	
Pn531	_						
Pn533	Current Threshold when DB Brake Circuit is Damaged	1 ~ 9	999	300	mA	Immediately	
-	-						

No.	Index	Name	Range	Unit	Default						
Pn534	Alarm Threshold in case of Excessive IPM Junction Temperature	1 ~ 200	135	°C	Immediately						
Pn535	Discharging Resistor Resistance	25 to 300	Ω	50	After restart						
	To set the resistance value for t	the braking.									
Pn536	Discharging Resistor Power	10 to 2000	W	60	After restart						
	To set the resistance value for t	the braking.									
	Momentary Power Interruption Hold Time	0 to 50	period	1	Immediately						
Pn538	Even if the main power supply to the Drive is interrupted momentarily, power supply to the Motor (servo ON status) will be maintained for the time set by this parameter. The setting is a number of periods, and the time of one period depends on the setting of										
	Pn007.3:Pn007.3=0, the time of one period is 1/50s.Pn007.3=1, the time of one period is 1/60s.										
Pn539	Pump-up Opening Delay Time	0 ~ 100	0	ms	Immediately						
F11339	-										
Pn540	Pump-up Closing Delay Time	0 ~ 100	0	ms	Immediately						
F11340	_										
Pn541	Current Threshold for Detecting Abnormal Operation	0 to 400	% In	200	Immediately						
P11341	Set a percentage threshold for the current to detect that the Motor has been operating abnormally.										
Pn542	Acceleration Threshold for Detecting Abnormal Operation	0 to 1000	krpm/s	50	Immediately						
	Set a threshold for the acceleration to detect that the Motor has been operating abnormally.										
Pn685	Speed of Finding Reference Point	0 to 3000	rpm	1500	Immediately						
-	-										
	Speed of Homing	0 to 200	rpm	30	Immediately						
Pn686	Sets the speed of the motor aft	er reaching the li	mit switch.								

No.	Index		Name	Range	Unit	Default	
	Homing Mode Setting		b0000 to b1111	_	0000	After restart	
Pn689		Pn689.0: Homing Enabled 0 Turn OFF the origin return function 1 Turn ON the origin return function Pn689.1: Direct Homing After Power-on 0 Homing triggered by SHOM signal 1 Direct homing after power-on Pn689.2: ORG Storage 0 Do not store the origin 1 Store the origin					
		Pn	689.3: Actions w	hen Encounteri	ng OT during Ho	ming	
		0	Return to find	homing position	n after encounte	ering OT	
		1	Enter limit sta	itus after encou	ntering OT		
Pn690	Offset Pulse Number During Homing (High-Bit)		-9999 to 9999	10000 pulse	0	Immediately	
20090	The parameters Pn690 and Pn number of the encoder offset				heir algebraic si	um is the pulse	
Pn691	Offset Pulse Number During Homing (Low-Bit)		-9999 to 9999	1 pulse	0	Immediately	
	Please refer to the instructions in Pn691.						
Dn402	Selection of Homing Mode		0 to 10	-	0	Immediately	
Pn692	-						
Pn693	Homing Acceleration		0 to 5000	_	100	Immediately	

No.	Index	Name	Range	Unit	Default			
Pn694	Origin Storage, Single-turn Position	-2147483648 to 2147483647	-	0	Immediately			
Pn695	Origin Storage, Multi-turn Position	-2147483648 to 2147483647	-	0	Immediately			
	Modbus Communication Setting	h0000 to h1182	-	0151	After restart			
		Pn700.0: MODBUS (Communication	Baud Rate				
		0 4800 bps						
		1 9600 bps						
		2 19200 bps						
		Pn700.1: Selection of MODBUS Protocol						
		0 7, N, 2 (Modbus, ASCII)						
Pn700		1 7, E, 1 (Modb	us, ASCII)					
		2 7, 0, 1 (Modb	ous, ASCII)					
		8, N, 2 (Modb	us, ASCII)					
		4 8, E, 1 (Modb	us, ASCII)					
		5 8, 0, 1 (Modb	ous, ASCII)					
		6 8, N, 2 (Modb						
		7 8, E, 1 (Modb						
		8 8, 0, 1 (Modb	ous, RTU)					
			uniontion Colo	ation				
	-	Pn700.2: SCI Comm						
			or SCI commun					
		Pn700.3 Reserved						

No.	Index	Name	Range	Unit	Default					
Pn701	MODBUS Axis Address	1 to 247	_	1	After restart					
PII/UI	The axis address during MODBUS protocol communication.									
	CAN Communication Settings	0 to 5	_	1	After restart					
Pn703	 [0] 50Kbps [1] 100Kbps [2] 125Kbps [3] 250Kbps [4] 500Kbps [5] 1Mbps 	[1] 100Kbps [2] 125Kbps [3] 250Kbps [4] 500Kbps								
D=704	CAN Communication Node	1 to 127	_	1	After restart					
Pn704	The axis address during CANopen communication.									
Pn705	DC Min. Cycle Threshold	1~9999999	11999	10ns	After restart					
	To set the DC jitter threshold in the FPGA									
Pn706	Jitter of DC Max. Cycle Threshold	1~99999	499	10ns	Immediately					
	To set the DC jitter threshold in the FPGA									

No.	Index		Name	Range	Unit	Default	
	Allocate virtual in port 1	nput sig	inal to	h00000000 to h1C1C1C1C	_	0B0A0908	Immediately
Pn709		Pn709. 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C	S-ON P-CON P-OT ALMRST CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J G-SEL JDPOS-J JDPOS-J TORQ_JI TORQ_JI TORQ_JI TORQ_JI TORQ_JI TORQ_JI TORQ_SI POS1 POS1 POS2 POS3 POS4 MDP1 MD0 MD1 I Allocat	OG- IALT D1 D2 PEED_LIMIT1 PEED_LIMIT2	- <i>0</i> b	Pn709.2: Alloca 00to1C: same of Bit8 Pn709.3: Alloca	te signal to Bit10 as the allocation te signal to Bit11 as the allocation

No.	Index			Name	Range	Unit	Default
	Allocate virtual in port 2	nput sig	gnal to	h00000000 to h1C1C1C1C	_	0F0E0D0C	Immediately
Pn710		Pn710 00 01 02 03 04 05 06 07 08 09 04 08 09 0A 0B 07 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 18 19 1A	S-ON P-CON P-OT N-OT ALMRST CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J TORQ_S SHOM ORG ZCLAMP TORQ_J TORQ_J TORQ_J TORQ_S ANLOD_ POS0 POS1 POS1 POS2 POS3 POS4 MDP1 MD0 MD1 1: Allocat	OG- IALT D1 D2 PEED_LIMIT1 PEED_LIMIT2	- 8 F	Pn710.2: Alloca 00to1C: same a of Bit12 Pn710.3: Alloca	te signal to Bit14 as the allocation te signal to Bit15 as the allocation

No.	Index		1	Name	Range	Unit	Default				
	Virtual Input P Inverts1	ort Signal		b0000 to b1111	-	0000	Immediately				
	5 <i>0 l</i>	388	Pn7 0 1	1 The signal is inverted.							
Pn716			Pn716.1: bit9 inverse selection								
			0	The signal is n	not inverted.						
			1	The signal is i	nverted.						
			Pn7	'16.2: bit10 inve	erse selection						
			0	The signal is n	not inverted.						
			1	The signal is i	nverted.						
			Pn7	'16.3: bit11 inve	erse selection						
			0	0 The signal is not inverted.							
			1	The signal is i	nverted.						

No.	Index	N	ame	Range	Unit	Default		
	Virtual Input Port Signal Inverts 2		0000 to 1111	-	0000	Immediately		
Pn717	n717		Pn717.0: bit12 inverse selection 0 The signal is not inverted. 1 The signal is inverted. 1 The signal is not inverted. 0 The signal is not inverted. 1 The signal is not inverted. 1 The signal is not inverted. 1 The signal is inverted. 1 The signal is not inverted.					
		Pn71	7.3: bit15 inve	erse selection				
	-	0 The signal is not inverted.						
		1 The signal is inverted.						
Pn720	Homing Method	1	to 35	_	1	Immediately		
P11720	Mapping to the object 6098h i	n CiA	402.					
Pn721	Speed during Search for Switch	1t	:o0x7FFFFFFF	0.1 rpm	5000	Immediately		
	Mapping to the object 6099:01	l in C	CiA402.					
D=722	Speed during Search for Zero	1t	00x7FFFFFFF	0.1 rpm	100	Immediately		
Pn722	Mapping to the object 6099:02	2 in C	CiA402.					
Do 722	Homing Acceleration	1t	00x7FFFFFFF	0.1 rpm/s	1000000	Immediately		
Pn723	Mapping to the object 609Ah i	n CiA	402.					
Pn724	Home Offset		147483648 2147483647	pulse	0	Immediately		
	Mapping to the object 6093-01	lh in	CiA402.					

No.	Index	Name	Range	Unit	Default							
Pn725	Bus Electronic Gear Ratio (Numerator)	1 ~1073741824	pulse	1	Immediately							
	Mapping to the object 6093:01	in CiA402.										
Pn726	Bus Electronic Gear Ratio (Denominator)	1 ~1073741824	pulse	1	After restart							
	Mapping to the object 6093:02 in CiA402.											
Pn728	Tool Magazine Single-turn Storage	-2147483648to 2147483647	pulse	0	Immediately							
	Tool magazine origin storage, single-turn position											
Pn729	Auto Signal-step Running Tool Change	0 to 1	_	0	Immediately							
	The enabled position for automatic single-step running tool change											
Pn730	Return to Nearest Tool Location Upon Power-on	0 to 1	_	0	After restart							
	The enabled position for returning to the nearest position after power it on											
Pn731	Position Offset Threshold for Return to Nearest Tool Location Upon Power-on	0 to 10000	0.0001 round	1000	Immediately							
	Range of tool number error is Pn737toPn731, and the disk moves to centre position of the nearest tool location											
Pn732	Returning Speed to Nearest Tool Location Upon Power-on	0 to 500	rpm	100	Immediately							
	The speed to return to the near	rest tool location	(1 arrival distan	ce) after power	on							
Pn733	Returning Acceleration to Nearest Tool Location Upon Power-on	0 to 10000	ms	200	Immediately							
11755	The acceleration to return to the nearest tool location after power on (the time required for accelerating from 0 to 1000 revolutions)											
Pn734	Returning Deceleration to Nearest Tool Location Upon Power-on	0 to 10000	ms	200	Immediately							
	The deceleration to return to the decelerating from 1000 revolution		cation after pow	ver on (the time	required for							
D- 725	Number of Tool Location	1 to 30	_	20	Immediately							
Pn735	_											

No.	Index	Name	Range	Unit	Default						
	Tool Change Running Speed	0 to 6000	rpm	3000	Immediately						
Pn736	-										
Pn737	Tool Number Error Range	0 to 10000	0.0001 round	250	Immediately						
PN737	The tool number error range, in which tool location stops and outputs tool number										
Pn738	Near Tool Running Acceleration	0 to 10000	ms	200	Immediately						
P117 30	The nearest tool running acceleration (the time required for accelerating from 0 to 1000 revolutions)										
	Near Tool Running Deceleration	0 to 10000	ms	200	Immediately						
Pn739	The nearest tool running deceleration (the time required for decelerating from 1000 revolutions to 0)										
Pn740	Remote Tool Running Acceleration	0 to 10000	ms	200	Immediately						
Pn740	The remote tool running acceleration (the time required for accelerating from 0 to 1000 revolutions)										
D 7.44	Remote Tool Running Deceleration	0 to 10000	ms	200	Immediately						
Pn741	The remote tool running accele revolutions to 0)	The remote tool running acceleration (the time required for decelerating from 1000 revolutions to 0)									
D. 742	Tool Change Delay	0 to 10000	ms	500	Immediately						
Pn742	The time delayed in tool change	2									

No.	Index	Nar	ne	Rar	ige	Unit	Default		
	Motor Power No.		h0000 ~ h050F		0	_	After restart		
Pn800		n800	.0: Motor Pov .1: Motor Pov .2: Motor Pov	wer N	ło.				
1	P	n800	.3: Motor Pov	wer N	lo.				
	Motor Design Sequence		h0000 ~ h0003		0	_	After restart		
	60000	n801.	.0: Motor Sec	iuenc	e				
		0 First generation motors							
		1 Second generation motors							
Pn801	2	2 Third-party motors							
		3 MXL motors							
		n801.	1: Reserved						
	Р	n801.	2: Reserved						
	Р	n801.	.3: Reserved						
Pn802	Initial Encoder Phase		0 ~ 2147483647	7	0	_	After restart		
	-	1			1				
Pn803	Reserved		0 ~ 0		0	_	After restart		
	Reserved		1			1			
Pn804	Motor Series		0 ~ 5		0	-	After restart		

No.	Index	Name	Range	Unit	Default
	 [0] EMJ [1] EMG [2] EML [3] EMB [4] reserved [5] MXL 				

No.	Index	Nam	e	Rang	ge	Unit	Default				
D::: 905	Motor Type		0 ~ 1		0	_	After restart				
Pn805	[0] SPM [1] IPM			•			i				
D _00 <i>C</i>	Voltage Class		0 ~ 1		0	_	After restart				
Pn806	[0] 200V [1] 380V										
Pn807	Motor Power		1 ~ 50000		1	W	After restart				
	-										
	Motor Temperature Sensor Type		0 ~ 3		0	_	After restart				
Pn808	[0] N/A [1] KTY84 [2] PT1000 [3] PT100										
Pn809	Motor Derating Factor		1 ~ 100		1	0.01Tn	After restart				
	_										
Pn810	Rated Torque		1 ~ 10000		1	0.01Nm	After restart				
	-										
Pn811	Max. Torque		1 ~ 10000		1	0.01Nm	After restart				
	_										
Pn812	Rated current		1 ~ 2000		1	0.1A	After restart				
	-										
Pn813	Max. current		1 ~ 2000		1	0.1A	After restart				
	_										
Pn814	Rated Speed		1 ~ 10000		1	rpm	After restart				
	-										
Pn815	Max. Speed		1 ~ 10000		1	rpm	After restart				
	_	_		_							
			1 ~ 10000		1		After				

No.	Index	Nam	e	Ran	ge	Unit	Default				
Pn817	a0*10000		-10000 ~ 10000		0	_	After restart				
	To convert torque into the corre	espond	ding current			•	-				
Pn818	a1*10000		-2000 ~ 200	0	0	_	After restart				
	To convert torque into the corresponding current										
Pn819	a2*10000		-2000 ~ 200	0	0	_	After restart				
	To convert torque into the corresponding current										
Pn820	a3*10000		0 ~ 0		0	_	After restart				
	To convert torque into the corresponding current										
Pn821	a4*10000		0 ~ 0		0	_	After restart				
	To convert torque into the corresponding current										
Pn822	b0*10000		-10000 ~ 10000		0	_	After restart				
	To convert current into the corresponding torque										
Pn823	b1*10000		-2000 ~ 200	0	0	_	After restart				
	To convert current into the corresponding torque										
Pn824	b2*10000		-2000 ~ 200	0	0	_	After restart				
	To convert current into the corresponding torque										
Pn825	b3*10000		0 ~ 0		0	_	After restart				
	To convert current into the corr	respon	ding torque								
Pn826	b4*10000		0 ~ 0		0	_	After restart				
	To convert current into the corr	respon	ding torque								
Pn827	Back Electromotive Force Coefficient Ke		1000 ~ 5000)	1000	0.01V/Krpm	After restart				
	-										
Pn828	Phase Resistance Rs		0 ~ 900000		0	0.001Ω	After restart				
	-			<u> </u>							
Pn829	Ld		0 ~ 5000		0	0.1mH	After restart				
	_										

No.	Index	Name	Range	Unit	Default						
Pn830	Lq	0 ~ 5000	0	0.1mH	After restart						
	_										
Pn831	Motor Inertia	0 ~ 10000	0	1e-8Kgm^2	After restart						
Pn832	Pair of Poles	0 ~ 20	0	_	After restart						
	_	Γ	[
Pn833	Electrical Time Constant te	0 ~ 10000	0	0.01ms	After restart						
Pn834	Mechanical Time Constant tm	0 ~ 10000	0	0.01ms	After restart						
Pn835	Thermal Time Constant th	0 ~ 10000	0	0.01ms	After restart						
	-										
Pn836	Thermal Model Parameter Tp[0]*10000	0 ~ 0	0	_	After restart						
	For motor overheating protection and alarm judgement.										
Pn837	Thermal Model Parameter Tp[1]*10000	0 ~ 0	0	_	After restart						
	For motor overheating protection and alarm judgement.										
Pn838	Thermal Model Parameter Tp[2]*10000	0 ~ 0	0	_	After restart						
	For motor overheating protectio	n and alarm juc	lgement.								
Pn839	Thermal Model Parameter Tp[3]*10000	0 ~ 0	0	_	After restart						
	For motor overheating protectio	n and alarm juc	lgement.								
Pn840	Thermal Model Parameter Tp[4]*10000	0 ~ 0	0	_	After restart						
	For motor overheating protectio	n and alarm juc	lgement.	· · · ·							
Pn841	Motor Overload Curve Factor k[0]*10000	0 ~ 10000	0	_	After restart						
	For motor overload protection a	nd alarm judge	ment.								
Pn842	Motor Overload Curve Factor k[1]*10000	0 ~ 10000	0	_	After restart						
	For motor overload protection a	nd alarm judge	ment.								

No.	Index	Nar	ne	Ran	ige	Unit	Default			
Pn843	Motor Overload Curve Factor k[2]*10000		0 ~ 100000		0	_	After restart			
	For motor overload protection and a		larm judgem	ent.						
Pn844	Motor Overload Curve Factor k[3]*10000		0 ~ 0		0	_	After restart			
	For motor overload protection a									
Pn845	Motor Overload Curve Factor k[4]*10000		0 ~ 0		0	_	After restart			
	For motor overload protection and alarm judgement.									
	Motor Oil Seal Property		0 ~ 1		0	_	After restart			
Pn846	[0] Without oil seal [1] With oil seal									
Pn875	Encoder Type		h0000 ~ h00)0E	0	_	After restart			

No.	Index	1	Name	Range	Unit	Default			
	60000								
		Pn8 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 8 9 4 8 9 4 5 5 6 7 2 8 9 4 5 5 6 7 2 8 9 6 7 2 8 8 9 7 6 1 1 5 5 6 6 1 1 1 5 5 1 1 1 1 1 1 1 1	17-bit single-t Reserved (reso Reserved 20-bit multi-tu 20-bit single-t 20-bit multi-tu 19-bit multi-tu 20-bit single-t 23-bit multi-tu	urn, Tamagawa urn, Tamagawa olver) urn, Nikon urn, Nikon urn, Tamagawa urn, Endat urn, Biss urn, Tamagawa urn, Tamagawa					
		Pn875.1: Encoder Type, as above							
		Pn875.2: Reserved							
		Pn8	75.3: Reserved						

No.	Index	Na	me	Rar	nge	Unit	Default
Pn876	Reserved		0		0	_	After restart
	_						
	Encoder Type		0 ~ 4		0	_	After restart
Pn877	[0] Reserved [1] Tamagawa [2] Nikon [3] Endat [4] Biss-C						
	Encoder Function Type		0 ~ 1		0		
Pn878	[0] Incremental [1] Absolute						
Pn880	Number of Bits of Encoder Resolution Used in the Progra	0 ~ 24		0	_	After restart	
Pn881	Encoder Multi-turn Information Resolution		0 ~ 20		0	_	After restart
	Drive Power Level		h0000 ~ h02	20F	0	_	After restart
Pn885		0 2 1 4 Pn8 0 2 1 4 Pn8 Pn8 5 0 F	.0: Drive Pow 200W 400W .1: Drive Pow 200W 400W 400W 400W 5.2: Drive Type 5 version 5 version 4.3: Reserved	er Le			
Pn895	Selection of Motor Phases and Parameter Zones	d	b0000 ~b11	11	0	_	After restart

No.	Index	I	Name	Range	Unit	Default					
	6000	<u>[]</u>									
		Pn8	1895.0: A58 Alarm Mask Bit								
		0	Enable the A58 the EEROM 1 z	8 alarm and use one	the phase infor	mation in					
		1		alarm and use th eter as the enco							
		Pn8	Pn895.1: Select A59 Alarm Mask Bit for Phase Information								
		0	0 Enable the A59 alarm and use the phase information EEROM 1 zone								
		1		alarm and use the enco							
		-	95.2: Select A42 prmation	2 Alarm Mask Bit	for Motor Parar	neter					
		0		is not masked, ration is not sup		r power					
		1		is masked, and ration is support		wer					
		Pn8	95.3: Type of Mo	otor Manufactur	er						
		0	ESTUN Motors								
		1	Third-party Mo	otors							

No.	Index	Nai	me	Ran	ige	Unit	Default	
Pn914	Asynchronous Drag Uq Amplitu	ude	0 ~ 1000		100	‰	After restart	
	The Voltage scale in thousand	s (‰)						
Pn915	Asynchronous Drag Frequency		1 ~ 100		30	_	After restart	
	_	1		1	1			
Pn916	Current Loop Bandwidth Setpo	oint	800 ~ 1200		850	Hz	After restart	
Pn917	 Percentage of Deadband Compensation 		0 ~ 100		0	%	After restart	
	– Binary Bit Parameter		b0000 ~ b00	11	0000	_	After restart	
Pn920		0 (1 1 Pn920 Analog 0 / 1 / Pn920	Node Enable Sv Drdinary mode Fest mode .1: gue Power-Up Mask the Analo Analogue powe .2: Reserved	Fund	ction Enabl power-up	function		
		Pn920	20.3: Reserved					
Pn921	Hexadecimal Bit Parameter		h0000 ~ h00	05	0000	-	After restart	

No.	Index	1	Name	Range	Unit	Default					
	68888										
		Pn921.0: Test Mode Selection									
		0	Position loop f	requency domai	in						
		1 Velocity loop frequency domain									
		2	Current loop f	requency domai	n						
		3	Current-loop step								
		4	Velocity loop	sweep							
		5	Current loop s	weep							
		Pn9	21.1: Reserved								
		Pn921.2: Reserved									
		Pn9	21.3: Reserved								

No.	Index N	ame	Range	Unit	Default					
D=022	Current Loop Step Test Id % Given	0 ~ 300	0	%	_					
Pn922	Rated Percentage (%)									
Pn923	Current Loop Step Test Iq % Given	0 ~ 300	0	%	After restart					
	Rated Percentage (%)									
Pn924	Current Given Time	0 ~ 30000	1000	62.5us	After restart					
	Reserved									
Pn925	Iq % of Given Offset of Current Loop Frequency Response Test	0 ~ 500	45	%	After restart					
Pn926	Iq % of Given Amplitude of Current Loop Frequency Response Test	1 ~ 500	30	%	After restart					
	-									
Pn927	Reserved	0~0	0	_	After restart					
	Reserved									
Pn928	Given Offset for Velocity Loop Frequency Response Test Speed	0 ~ 1000	500	rpm	After restart					
	-									
Pn929	Given Amplitude for Velocity Loop Frequency Response Test	1 ~ 1000	30	rpm	After restart					
	_									
Pn930	Reserved	0~0	0	-	After restart					
	Reserved									
Pn931	DA Output Voltage Amplitude in Frequency Response Test Mode	1 ~ 50	5	0.1V	After restart					
	_									
Pn932	Sweep Frequency	1 ~ 3000	50	Hz	After restart					
	_									
Pn933	Reserved	0~0	0	_	After restart					
	Reserved									
Pn934	Reserved	0~0	0	-	After restart					
	Reserved									
Pn935	Speed Ratio per Volt in Position Loop Frequency Domain Test	1 ~ 90000	10	_	After restart					

No.	Index	Name		Unit	Default			
	The higher the value, the higher the speed during the position loop test.							

No.	Index	Name	Rar	nge	Unit	Default				
Pn938	Reserved	0~0		0	_	_				
F11936	Reserved									
Pn939	STO Function Masking	0 ~ 1	0 ~ 1		_	After restart				
111/3/	[0] Not mask STO [1] Mask STO									
D =040	Interrupt Cycle Time Setting	0 ~ 1	0 ~ 1		_	After restart				
Pn940	[0] 100us interrupt cycle [1] 125us interrupt cycle									
D 0.41	MXL Motor Field Weakening Enabl	e 0 ~ 1	0 ~ 1		-	After restart				
Pn941	[0] Shield the Field Weakening function [1] Enable the Field Weakening function									
Pn942	Field Weakening PI regulator, kp	0 ~ 9000)	20	0.01	After restart				
	_			<u>.</u>						
Pn943	Field Weakening PI regulator, ki	0 ~ 9000)	4000	0.1	After restart				
	-									
Pn944	Field Weakening Idr Max Limit %	0 ~ 100		60	%	After restart				
	Max. Limit Value of Field Weakening Idr %									
D-045	Current Loop Control Mode	0 ~ 1		0	_	After restart				
Pn945	[0] Voltage feed-forward decoupl[1] Complex vector control	ing control								
Pn946	Magnetically Programmed Motor Sets Communication Frequency Enable ON Switch	0~ 1		1	_	After restart				
	Magnetically programmed motor sets the communication frequency to enable the on switch									
Pn949	Motor Torque Limit Bias	-50 ~ 10	0	20	%	After restart				
	Percentage of motor torque limit	ing bias								
Dn051	Enable Tz	0 ~ 1		1	_	After restart				
Pn951	[0] Shield Tz [1] Enable Tz									
Pn952	Amplification of Motor Tmax and Pn401/402	100 ~ 20	00	100	0.01	After restart				

No.	Index	Name	Range	Unit	Default								
	•		1/402 is used to	increase the m	The amplification of the motor Tmax and of Pn401/402 is used to increase the motor output torque when the Kt calibration is inaccurate.								

No.	Index		Nam	ne	Rang	ge	Unit	Default
D=052	Amplify Motor Imax	(100 ~ 150		105	0.01	
Pn953	Amplify the motor	Imax	I					
Dr:054	Alarm Self-test			0 ~ 6		0	_	After restart
Pn954	To debug variables [0] No alarm; [x] Ti		nulate	alarms and	warni	ngs during	alarm self-1	est.
Pn955	Busbar Voltage Correction			-30 ~ 30		0	v	After restart
F11933	The bus voltage valused.	lue calculate	d fror	n the sampli	ng pli	us this valu	e is the fina	l voltage value
	ePWM Forced Sync EC Mode	in	0~1		1	_	After restart	
Pn957	[0] No synchronizat	Forced synchronization enable bit of ePWM timer and EC distribution clock [0] No synchronization [1] Forced synchronization (default)						
Pn960	Alarm Mask Registe	r		b0000 ~ b11	11	Ь0000	_	After restart
	Alarm Mask Registe	r		b0000 ~ b11	11	Ь0000	_	After restart
	6881	<u>.</u>						
		Pr	n960.	0: A37				
		0	N	ot masked				
		1	м	asked				
		Pr	n960.	1: A14				
Pn960		0	N	ot masked				
		1	M	asked				
		Pr	n960.:	2: A13				
		0	N	ot masked				
		1	M	asked				
		Pr	n960.	3:A20				
		0	N	ot masked				
		1	Μ	lasked				

No.	Index	Na	ime	Ran	ige	Unit	Default		
	Alarm Mask Register		b0000 ~ b11	11	b0000	_	After restart		
	5 <i>888</i>								
		Pn961	Pn961.0: A81						
		0	Not masked						
		1	Masked						
		Pn961.1: A04							
Pn961		0	Not masked						
		1	Masked						
		Pn961.2: A1C							
		0	Not masked						
		1	Masked						
		Pn961	.3:A11						
	0		0 Not masked						
		1	Masked		1	ſ			
Pn962	Alarm Mask Register		b0000 ~ b11	11	0000	_	After restart		

No.	Index	١	Name	Range	Unit	Default				
	60000	7								
		Pn96	62.0: A18							
		0	Not masked							
		1	Masked							
		Pn962.1: A19								
		0	0 Not masked							
		1	Masked							
		Pn96	62.2: A23							
		0	Not masked							
		1	Masked							
		Pn962.3:A16								
		0	Not masked							
		1	Masked							

No.	Index	Na	ame	Rar	ige	Unit	Default	
	Alarm Mask Register		b0000 ~ b11	11	0000	_	After restart	
	60000							
		Pn963	3.0: A24					
		0	Not masked					
		1	Masked					
		Pn963.1: A1A						
Pn963		0	Not masked					
		1	Masked					
		Pn963	3.2: A1B					
		0	Not masked					
		1	Masked					
		Pn963	3.3:A1F					
	0		Not masked					
		1	Masked					
Pn964	Alarm Mask Register		b0000 ~ b11	11	0000	-	After restart	

No.	Index	1	Name	Range	Unit	Default		
	<u>60000</u>	Pn964.0: A36 Mask Bit (NEXT52 Power Failure)0Not masked1MaskedPn964.1: A.35 Mask Bit (Control Panel Temperature Sensor						
			connected)					
		0	Not masked					
		1	Masked					
		Pn9	64.2: A.1d Mask	Bit (NTC Discon	nected)			
		0	Not masked					
		1	Masked					
		Pn964.3: A.34 Mask Bit (Control Panel Temperature Sensor Disconnected)						
		0	Not masked					
		1	Masked					

No.	Index	Nar	ne	Rar	ige	Unit	Default	
	Alarm Mask Register		b0000 ~ b00	01	0000	_	After restart	
	60000							
Pn965			0: Mask Bit (Enco	der Positio	n Jump Alarr	n)	
Pn965			lot masked Nasked					
			1: Reserved					
	P	n965.	2: Reserved					
	P	1	3: Reserved	I				
PnA00	PCP Control Position Pulse 0		00000000 2000000000	1P		0	Immediately	
	The position pulse reference co	orresp	oonding to PC	P co	ntrol conta	ict 0		
PnA01	PCP Control Position Pulse 1		00000000 2000000000	1P		0	Immediately	
	The position pulse reference co	orresp	oonding to PC	Р со	ntrol conta	ict 1		
PnA02	PCP Control Position Pulse 2		00000000 2000000000	1P		0	Immediately	
	The position pulse reference co	orresp	oonding to PC	Р со	ntrol conta	ict 2		
PnA03	PCP Control Position Pulse 3		00000000 2000000000	1P		0	Immediately	
	The position pulse reference c	orresp	oonding to PC	Р со	ntrol conta	ict 3		
PnA04	PCP Control Position Pulse 4		00000000 2000000000	1P		0	Immediately	
	The position pulse reference corresponding to PCP control contact 4							
PnA05	PCP Control Position Pulse 5		00000000 2000000000	1P		0	Immediately	
	The position pulse reference corresponding to PCP control contact 5							

No.	Index	Name	Range	Unit	Default				
PnA06	PCP Control Position Pulse 6	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	osition pulse reference corresponding to PCP control contact 6							
PnA07	PCP Control Position Pulse 7	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 7					
PnA08	PCP Control Position Pulse 8	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 8					
PnA09	PCP Control Position Pulse 9	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 9					
PnA10	PCP Control Position Pulse 10	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 10								
PnA11	PCP Control Position Pulse 11	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 11								
PnA12	PCP Control Position Pulse 12	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 12								
PnA13	PCP Control Position Pulse 13	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 13					
PnA14	PCP Control Position Pulse 14	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 14					
PnA15	PCP Control Position Pulse 15	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 15					
PnA16	PCP Control Position Pulse 16	-200000000 to 200000000	1P	0	Immediately				
	The position pulse reference co	prresponding to PC	P control conta	ct 16					

No.	Index	Name	Range	Unit	Default							
PnA17	PCP Control Position Pulse 17	-2000000000 to 2000000000	1P	0	Immediately							
	The position pulse reference corresponding to PCP control contact 17											
PnA18	PCP Control Position Pulse 18	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference co	rresponding to PC	P control conta	ct 18								
PnA19	PCP Control Position Pulse 19	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference co	rresponding to PC	P control conta	ct 19								
PnA20	PCP Control Position Pulse 20	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference co	rresponding to PC	P control conta	ct 20								
PnA21	PCP Control Position Pulse 21	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference corresponding to PCP control contact 21											
PnA22	PCP Control Position Pulse 22	-2000000000 to 2000000000	1P	0	Immediately							
	The position pulse reference corresponding to PCP control contact 22											
PnA23	PCP Control Position Pulse 23	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference corresponding to PCP control contact 23											
PnA24	PCP Control Position Pulse 24	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference corresponding to PCP control contact 24											
PnA25	PCP Control Position Pulse 25	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference co	rresponding to PC	P control conta	ct 25								
PnA26	PCP Control Position Pulse 26	-200000000 to 200000000	1P	0	Immediately							
-	The position pulse reference co	rresponding to PC	P control conta	ct 26								
PnA27	PCP Control Position Pulse 27	-200000000 to 200000000	1P	0	Immediately							
	The position pulse reference co	rresponding to PC	P control conta	ct 27	The position pulse reference corresponding to PCP control contact 27							

No.	Index	Name	Range	Unit	Default			
PnA28	PCP Control Position Pulse 28	-200000000 to 200000000	1P	0	Immediately			
	The position pulse reference co	rresponding to PC	P control conta	ct 28				
PnA29	PCP Control Position Pulse 29	-200000000 to 200000000	1P	0	Immediately			
	The position pulse reference co	rresponding to PC	P control conta	ct 29				
PnA30	PCP Control Position Pulse 30	-200000000 to 200000000	1P	0	Immediately			
	The position pulse reference co	rresponding to PC	P control conta	ct 30				
PnA31	PCP Control Position Pulse 31	-200000000 to 200000000	1P	0	Immediately			
	The position pulse reference co	rresponding to PC	P control conta	ct 31				
PnA32	PCP Control Position Speed 0	0 to 6000	rpm	500	Immediately			
THAJZ	The speed reference corresponding to PCP control contact 0							
PnA33	PCP Control Position Speed 1	0 to 6000	rpm	500	Immediately			
FIIAJJ	The speed reference corresponding to PCP control contact 1							
PnA34	PCP Control Position Speed 2	0 to 6000	rpm	500	Immediately			
PIIA34	The speed reference corresponding to PCP control contact 2							
PnA35	PCP Control Position Speed 3	0 to 6000	rpm	500	Immediately			
FIIAJJ	The speed reference correspond	ding to PCP contro	ol contact 3					
D= 4.27	PCP Control Position Speed 4	0 to 6000	rpm	500	Immediately			
PnA36	The speed reference corresponding to PCP control contact 4							
D:: 4.27	PCP Control Position Speed 5	0 to 6000	rpm	500	Immediately			
PnA37	The speed reference corresponding to PCP control contact 5							
Dn 4 2 9	PCP Control Position Speed 6	0 to 6000	rpm	500	Immediately			
PnA38	The speed reference correspond	ding to PCP contro	ol contact 6					
Dn 4 20	PCP Control Position Speed 7	0 to 6000	rpm	500	Immediately			
PnA39	The speed reference correspond	The speed reference corresponding to PCP control contact 7						

No.	Index	Name	Range	Unit	Default				
D= 4.40	PCP Control Position Speed 8	0 to 6000	rpm	500	Immediately				
PnA40	The speed reference corresponding to PCP control contact 8								
D- 4.44	PCP Control Position Speed 9	0 to 6000	rpm	500	Immediately				
PnA41	The speed reference correspond	ding to PCP contro	ol contact 9						
PnA42	PCP Control Position Speed 10	0 to 6000	rpm	500	Immediately				
FIIA4Z	The speed reference correspond	ding to PCP contro	ol contact 10						
PnA43	PCP Control Position Speed 11	0 to 6000	rpm	500	Immediately				
PHA43	The speed reference correspond	ding to PCP contro	ol contact 11						
D:: 4.4.4	PCP Control Position Speed 12	0 to 6000	rpm	500	Immediately				
PnA44	The speed reference corresponding to PCP control contact 12								
D. 4.45	PCP Control Position Speed 13	0 to 6000	rpm	500	Immediately				
PnA45	The speed reference corresponding to PCP control contact 13								
D= 4.44	PCP Control Position Speed 14	0 to 6000	rpm	500	Immediately				
PnA46	The speed reference corresponding to PCP control contact 14								
D:: 4 47	PCP Control Position Speed 15	0 to 6000	rpm	500	Immediately				
PnA47	The speed reference corresponding to PCP control contact 15								
D:: 4.49	PCP Control Position Speed 16	0 to 6000	rpm	500	Immediately				
PnA48	The speed reference corresponding to PCP control contact 16								
D 4 40	PCP Control Position Speed 17	0 to 6000	rpm	500	Immediately				
PnA49	The speed reference corresponding to PCP control contact 17								
D 450	PCP Control Position Speed 18	0 to 6000	rpm	500	Immediately				
PnA50	The speed reference corresponding to PCP control contact 18								
D. 454	PCP Control Position Speed 19	0 to 6000	rpm	500	Immediately				
PnA51	The speed reference correspond	ding to PCP contro	ol contact 19						
	PCP Control Position Speed 20	0 to 6000	rpm	500	Immediately				
PnA52	The speed reference corresponding to PCP control contact 20								

No.	Index	Name	Range	Unit	Default				
	PCP Control Position Speed 21	0 to 6000	rpm	500	Immediately				
PnA53	The speed reference corresponding to PCP control contact 21								
PnA54	PCP Control Position Speed 22	0 to 6000	rpm	500	Immediately				
PHAJ4	The speed reference correspond	ding to PCP contro	ol contact 22						
	PCP Control Position Speed 23	0 to 6000	rpm	500	Immediately				
PnA55	The speed reference correspond	ding to PCP contro	ol contact 23						
PnA56	PCP Control Position Speed 24	0 to 6000	rpm	500	Immediately				
PNADO	The speed reference correspond	ding to PCP contro	ol contact 24						
D 4 5 7	PCP Control Position Speed 25	0 to 6000	rpm	500	Immediately				
PnA57	The speed reference corresponding to PCP control contact 25								
	PCP Control Position Speed 26	0 to 6000	rpm	500	Immediately				
PnA58	The speed reference corresponding to PCP control contact 26								
	PCP Control Position Speed 27	0 to 6000	rpm	500	Immediately				
PnA59	The speed reference corresponding to PCP control contact 27								
PnA60	PCP Control Position Speed 28	0 to 6000	rpm	500	Immediately				
PHAOU	The speed reference corresponding to PCP control contact 28								
PnA61	PCP Control Position Speed 29	0 to 6000	rpm	500	Immediately				
FIAUT	The speed reference corresponding to PCP control contact 29								
$Dn \lambda 42$	PCP Control Position Speed 30	0 to 6000	rpm	500	Immediately				
PnA62	The speed reference correspond	ding to PCP contro	ol contact 30						
PnA63	PCP Control Position Speed 31	0 to 6000	rpm	500	Immediately				
PNA03	The speed reference correspond	ding to PCP contro	ol contact 31						
PnA64	PCP Control Contact Attribute 0	h0000 to h1112	-	0	Immediately				
	The attribute corresponding to	PCP control conta	act 0						
PnA65	PCP Control Contact Attribute	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP control contact 1								

No.	Index	Name	Range	Unit	Default			
PnA66	PCP Control Contact Attribute 2	h0000 to h1112	-	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 2					
PnA67	PCP Control Contact Attribute 3	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 3					
PnA68	PCP Control Contact Attribute	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	act 4					
PnA69	PCP Control Contact Attribute 5	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 5					
PnA70	PCP Control Contact Attribute 6	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 6							
PnA71	PCP Control Contact Attribute 7	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 7							
PnA72	PCP Control Contact Attribute 8	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 8							
PnA73	PCP Control Contact Attribute 9	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 9					
PnA74	PCP Control Contact Attribute 10	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	act 10					
PnA75	PCP Control Contact Attribute 11	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	act 11					
PnA76	PCP Control Contact Attribute 12	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 12							

No.	Index	Name	Range	Unit	Default			
PnA77	PCP Control Contact Attribute 13	h0000 to h1112	-	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 13					
PnA78	PCP Control Contact Attribute 14	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 14					
PnA79	PCP Control Contact Attribute 15	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 15					
PnA80	PCP Control Contact Attribute 16	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 16					
PnA81	PCP Control Contact Attribute 17	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 17							
PnA82	PCP Control Contact Attribute 18	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 18							
PnA83	PCP Control Contact Attribute 19	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 19							
PnA84	PCP Control Contact Attribute 20	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	act 20					
PnA85	PCP Control Contact Attribute 21	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	ict 21					
PnA86	PCP Control Contact Attribute 22	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to	PCP control conta	act 22					
PnA87	PCP Control Contact Attribute 23	h0000 to h1112	_	0	Immediately			
	The attribute corresponding to PCP control contact 23							

No.	Index	Name	Range	Unit	Default				
PnA88	PCP Control Contact Attribute 24	h0000 to h1112	-	0	Immediately				
	The attribute corresponding to PCP control contact 24								
PnA89	PCP Control Contact Attribute 25	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to	PCP control conta	act 25						
PnA90	PCP Control Contact Attribute 26	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to	PCP control conta	act 26						
PnA91	PCP Control Contact Attribute 27	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to	PCP control conta	act 27						
PnA92	PCP Control Contact Attribute 28	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP control contact 28								
PnA93	PCP Control Contact Attribute 29	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP control contact 29								
PnA94	PCP Control Contact Attribute 30	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP control contact 30								
PnA95	PCP Control Contact Attribute 31	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to	PCP control conta	act 31						
PnB00	PCP Control Contact Acceleration Time 0	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 0						
PnB01	PCP Control Contact Acceleration Time 1	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 1						
PnB02	PCP Control Contact Acceleration Time 2	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 2								

No.	Index	Name	Range	Unit	Default					
PnB03	PCP Control Contact Acceleration Time 3	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	The acceleration time corresponding to PCP control contact 3								
PnB04	PCP Control Contact Acceleration Time 4	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 4							
PnB05	PCP Control Contact Acceleration Time 5	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 5							
PnB06	PCP Control Contact Acceleration Time 6	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 6							
PnB07	PCP Control Contact Acceleration Time 7	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding to PCP control contact 7									
PnB08	PCP Control Contact Acceleration Time 8	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding to PCP control contact 8									
PnB09	PCP Control Contact Acceleration Time 9	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding to PCP control contact 9									
PnB10	PCP Control Contact Acceleration Time 10	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding to PCP control contact 10									
PnB11	PCP Control Contact Acceleration Time 11	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 11							
PnB12	PCP Control Contact Acceleration Time 12	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 12							
PnB13	PCP Control Contact Acceleration Time 13	0 to 10000	ms	50	Immediately					
	The acceleration time correspo	nding to PCP cont	rol contact 13							

No.	Index	Name	Range	Unit	Default				
PnB14	PCP Control Contact Acceleration Time 14	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 14								
PnB15	PCP Control Contact Acceleration Time 15	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 15						
PnB16	PCP Control Contact Acceleration Time 16	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 16						
PnB17	PCP Control Contact Acceleration Time 17	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 17						
PnB18	PCP Control Contact Acceleration Time 18	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 18								
PnB19	PCP Control Contact Acceleration Time 19	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 19								
PnB20	PCP Control Contact Acceleration Time 20	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 20								
PnB21	PCP Control Contact Acceleration Time 21	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 21								
PnB22	PCP Control Contact Acceleration Time 22	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 22						
PnB23	PCP Control Contact Acceleration Time 23	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 23						
PnB24	PCP Control Contact Acceleration Time 24	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 24						

No.	Index	Name	Range	Unit	Default				
PnB25	PCP Control Contact Acceleration Time 25	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 25								
PnB26	PCP Control Contact Acceleration Time 26	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 26						
PnB27	PCP Control Contact Acceleration Time 27	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 27						
PnB28	PCP Control Contact Acceleration Time 28	0 to 10000	ms	50	Immediately				
	The acceleration time correspo	nding to PCP cont	rol contact 28						
PnB29	PCP Control Contact Acceleration Time 29	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 29								
PnB30	PCP Control Contact Acceleration Time 30	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 30								
PnB31	PCP Control Contact Acceleration Time 31	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 31								
PnB32	PCP Control Contact Deceleration Time 0	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 0								
PnB33	PCP Control Contact Deceleration Time 1	0 to 10000	ms	50	Immediately				
	The deceleration time correspo	nding to PCP cont	rol contact 1						
PnB34	PCP Control Contact Deceleration Time 2	0 to 10000	ms	50	Immediately				
	The deceleration time correspo	nding to PCP cont	rol contact 2						
PnB35	PCP Control Contact Deceleration Time 3	0 to 10000	ms	50	Immediately				
*	The deceleration time corresponding to PCP control contact 3								

No.	Index	Name	Range	Unit	Default
PnB36	PCP Control Contact Deceleration Time 4	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 4		
PnB37	PCP Control Contact Deceleration Time 5	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 5		
PnB38	PCP Control Contact Deceleration Time 6	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 6		
PnB39	PCP Control Contact Deceleration Time 7	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 7		
PnB40	PCP Control Contact Deceleration Time 8	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 8		
PnB41	PCP Control Contact Deceleration Time 9	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 9		
PnB42	PCP Control Contact Deceleration Time 10	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 10		
PnB43	PCP Control Contact Deceleration Time 11	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 11		
PnB44	PCP Control Contact Deceleration Time 12	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 12		
PnB45	PCP Control Contact Deceleration Time 13	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 13		
PnB46	PCP Control Contact Deceleration Time 14	0 to 10000	ms	50	Immediately
•	The deceleration time correspo	nding to PCP cont	rol contact 14		

No.	Index	Name	Range	Unit	Default
PnB47	PCP Control Contact Deceleration Time 15	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 15		
PnB48	PCP Control Contact Deceleration Time 16	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 16		
PnB49	PCP Control Contact Deceleration Time 17	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 17		
PnB50	PCP Control Contact Deceleration Time 18	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 18		
PnB51	PCP Control Contact Deceleration Time 19	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 19		
PnB52	PCP Control Contact Deceleration Time 20	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 20		
PnB53	PCP Control Contact Deceleration Time 21	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 21		
PnB54	PCP Control Contact Deceleration Time 22	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 22		
PnB55	PCP Control Contact Deceleration Time 23	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 23		
PnB56	PCP Control Contact Deceleration Time 24	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 24		
PnB57	PCP Control Contact Deceleration Time 25	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 25		

No.	Index	Name	Range	Unit	Default
PnB58	PCP Control Contact Deceleration Time 26	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 26		
PnB59	PCP Control Contact Deceleration Time 27	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 27		
PnB60	PCP Control Contact Deceleration Time 28	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	crol contact 28		
PnB61	PCP Control Contact Deceleration Time 29	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 29		
PnB62	PCP Control Contact Deceleration Time 30	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	crol contact 30		
PnB63	PCP Control Contact Deceleration Time 31	0 to 10000	ms	50	Immediately
	The deceleration time correspo	nding to PCP cont	rol contact 31		
PnB64	PCP Control Contact Delay 0	0 to 10000	ms	100	Immediately
	The delay time corresponding to	o PCP control con	tact 0		
PnB65	PCP Control Contact Delay 1	0 to 10000	ms	100	Immediately
THEOS	The delay time corresponding to	o PCP control con	tact 1		
PnB66	PCP Control Contact Delay 2	0 to 10000	ms	100	Immediately
PIID00	The delay time corresponding to	o PCP control con	tact 2		
PnB67	PCP Control Contact Delay 3	0 to 10000	ms	100	Immediately
PIID07	The delay time corresponding to	o PCP control con	tact 3		
PnB68	PCP Control Contact Delay 4	0 to 10000	ms	100	Immediately
	The delay time corresponding to	o PCP control con	tact 4		
	PCP Control Contact Delay 5	0 to 10000	ms	100	Immediately
PnB69	The delay time corresponding to	o PCP control con	tact 5		

No.	Index	Name	Range	Unit	Default
	PCP Control Contact Delay 6	0 to 10000	ms	100	Immediately
PnB70	The delay time corresponding t	o PCP control con	tact 6		
D. D.74	PCP Control Contact Delay 7	0 to 10000	ms	100	Immediately
PnB71	The delay time corresponding t	o PCP control con	tact 7		
	PCP Control Contact Delay 8	0 to 10000	ms	100	Immediately
PnB72	The delay time corresponding t	o PCP control con	tact 8		
	PCP Control Contact Delay 9	0 to 10000	ms	100	Immediately
PnB73	The delay time corresponding t	o PCP control con	tact 9		
	PCP Control Contact Delay 10	0 to 10000	ms	100	Immediately
PnB74	The delay time corresponding t	o PCP control con	tact 10		i
	PCP Control Contact Delay 11	0 to 10000	ms	100	Immediately
PnB75	The delay time corresponding t	o PCP control con	tact 11		
D. D.7/	PCP Control Contact Delay 12	0 to 10000	ms	100	Immediately
PnB76	The delay time corresponding t	o PCP control con	tact 12		
D=D77	PCP Control Contact Delay 13	0 to 10000	ms	100	Immediately
PnB77	The delay time corresponding t	o PCP control con	tact 13		
D. D.70	PCP Control Contact Delay 14	0 to 10000	ms	100	Immediately
PnB78	The delay time corresponding t	o PCP control con	tact 14		
D. D.70	PCP Control Contact Delay 15	0 to 10000	ms	100	Immediately
PnB79	The delay time corresponding t	o PCP control con	tact 15		
D. D00	PCP Control Contact Delay 16	0 to 10000	ms	100	Immediately
PnB80	The delay time corresponding t	o PCP control con	tact 16		
D. D04	PCP Control Contact Delay 17	0 to 10000	ms	100	Immediately
PnB81	The delay time corresponding t	o PCP control con	tact 17		
D D-00	PCP Control Contact Delay 18	0 to 10000	ms	100	Immediately
PnB82	The delay time corresponding t	o PCP control con	tact 18		

No.	Index	Name	Range	Unit	Default
D D 0 2	PCP Control Contact Delay 19	0 to 10000	ms	100	Immediately
PnB83	The delay time corresponding t	o PCP control con	tact 19		
	PCP Control Contact Delay 20	0 to 10000	ms	100	Immediately
PnB84	The delay time corresponding t	o PCP control con	tact 20		
PnB85	PCP Control Contact Delay 21	0 to 10000	ms	100	Immediately
PIIDOJ	The delay time corresponding t	o PCP control con	tact 21		
PnB86	PCP Control Contact Delay 22	0 to 10000	ms	100	Immediately
FIIDOU	The delay time corresponding t	o PCP control con	tact 22		
D D 0 7	PCP Control Contact Delay 23	0 to 10000	ms	100	Immediately
PnB87	The delay time corresponding t	o PCP control con	tact 23		
D D 0 0	PCP Control Contact Delay 24	0 to 10000	ms	100	Immediately
PnB88	The delay time corresponding t	o PCP control con	tact 24		
D=020	PCP Control Contact Delay 25	0 to 10000	ms	100	Immediately
PnB89	The delay time corresponding t	o PCP control con	tact 25		
PnB90	PCP Control Contact Delay 26	0 to 10000	ms	100	Immediately
PIID9U	The delay time corresponding t	o PCP control con	tact 26		
D. D04	PCP Control Contact Delay 27	0 to 10000	ms	100	Immediately
PnB91	The delay time corresponding t	o PCP control con	tact 27		
D. D02	PCP Control Contact Delay 28	0 to 10000	ms	100	Immediately
PnB92	The delay time corresponding t	o PCP control con	tact 28		
D D D D	PCP Control Contact Delay 29	0 to 10000	ms	100	Immediately
PnB93	The delay time corresponding t	o PCP control con	tact 29		
DpD04	PCP Control Contact Delay 30	0 to 10000	ms	100	Immediately
PnB94	The delay time corresponding t	o PCP control con	tact 30		
D. D.C.	PCP Control Contact Delay 31	0 to 10000	ms	100	Immediately
PnB95	The delay time corresponding t	o PCP control con	tact 31		

Chapter 12 Object Dictionary

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	oort					Unit
							All	IP	PP	PV	PT	НМ	
1000		VAR	device_type	UINT32	RO	NO	•						
1001		VAR	error_register	UINT8	RO	NO	•						
1003		VAR	pre_defined_error_field	UINT8	RW	NO	•						
1005		VAR	cob_id_sync	UINT32	RW	NO	•						
1006		VAR	communication_cycle_period	UINT32	RW	NO	•						
1007		VAR	synchronous_window_length	UINT32	RW	NO	•						
1014		VAR	cob_id_emergency_message	UINT32	RW	NO	•						
			consumer_heartbeat_time				•						
1016	0	ARRAY	number_of_entries	UINT8	RO	NO	•						
	1		consumer_heartbeat_time1	UINT32	RW	NO	•						
1017		VAR	producer_heartbeat_time	UINT16	RW	NO	•						
			identity_object				•						
	0		number_of_entries	UINT8	RO	NO	•						
4040	1	DECODD	vendor_id	UINT32	RO	NO	•						
1018	2	RECORD	product_code	UINT32	RO	NO	•						
	3	1	revision_number	UINT32	RO	NO	•						
	4	1	serial_number	UINT32	RO	NO	•						
1029		ARRAY	error_behaviour				•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	Support					Unit
							All	IP	PP	PV	PT	НМ	
	0		number_of_entries	UINT8	RO	NO	•						
	1		communication_error	UINT8	RW	NO	•						
			server_sdo_parameter				•						
1200	0	RECORD	number_of_entries	UINT8	RO	NO	•						
	1		cob_id_client_server	UINT32	RO	NO	•						
	2	-	cob_id_server_client	UINT32	RO	NO	•						
			receive_pdo_parameter_rpdo1				•						
1400	0	RECORD	number_of_entries_rpdo1	UINT8	RO	NO	•						
1400	1	RECORD	cob_id_used_by_pdo_rpdo1	UINT32	RO	NO	•						
	2		transmission_type_rpdo1	UINT8	RW	NO	•						
			receive_pdo_parameter_rpdo2				•						
1401	0	RECORD	number_of_entries_rpdo2	UINT8	RO	NO	•						
1401	1	RECORD	cob_id_used_by_pdo_rpdo2	UINT32	RO	NO	•						
	2		transmission_type_rpdo2	UINT8	RW	NO	•						
			receive_pdo_parameter_rpdo3				•						
1402	0	RECORD	number_of_entries_rpdo3	UINT8	RO	NO	•						
1402	1	ALCORD	cob_id_used_by_pdo_rpdo3	UINT32	RO	NO	•						
	2		transmission_type_rpdo3	UINT8	RW	NO	•						
1403		RECORD	receive_pdo_parameter_rpdo4				•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	Support					Unit
							All	IP	PP	PV	PT	НМ	
	0		number_of_entries_rpdo4	UINT8	RO	NO	•						
	1		cob_id_used_by_pdo_rpdo4	UINT32	RO	NO	•						
	2		transmission_type_rpdo4	UINT8	RW	NO	•						
			receive_pdo_mapping_rpdo1				•						
	0		number_of_entries	UINT8	RO	NO	•						
1600	1	RECORD	first_mapped_object_rpdo1	UINT32	RW	NO	•						
1000	2	RECORD	second_mapped_object_rpdo1	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo1	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo1	UINT32	RW	NO	•						
			receive_pdo_mapping_rpdo2				•						
	0		number_of_entries	UINT8	RO	NO	•						
1601	1	RECORD	first_mapped_object_rpdo2	UINT32	RW	NO	•						
1001	2	RECORD	second_mapped_object_rpdo2	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo2	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo2	UINT32	RW	NO	•						
			receive_pdo_mapping_rpdo3				•						
	0		number_of_entries	UINT8	RO	NO	•						
1602	1	RECORD	first_mapped_object_rpdo3	UINT32	RW	NO	•						
1002	2		second_mapped_object_rpdo3	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo3	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo3	UINT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
			receive_pdo_mapping_rpdo4				•						
	0		number_of_entries	UINT8	RO	NO	•						
1603	1	RECORD	first_mapped_object_rpdo4	UINT32	RW	NO	•						
1003	2	RECORD	second_mapped_object_rpdo4	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo4	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo4	UINT32	RW	NO	•						
			transmit_pdo_parameter_tpdo1				•						
	0		number_of_entries_tpdo1	UINT32	RO	NO	•						
1800	1	RECORD	cob_id_used_by_pdo_tpdo1	UINT32	RO	NO	•						
1000	2	RECORD	transmission_type_tpdo1	UINT8	RW	NO	•						
	3		inhibit_time_tpdo1	UINT16	RW	NO	•						
	5		event_timer_tpdo1	UINT16	RW	NO	•						
			transmit_pdo_parameter_tpdo2				•						
	0		number_of_entries_tpdo2	UINT32	RO	NO	•						
1801	1	RECORD	cob_id_used_by_pdo_tpdo2	UINT32	RO	NO	•						
1001	2	RECORD	transmission_type_tpdo2	UINT8	RW	NO	•						
	3		inhibit_time_tpdo2	UINT16	RW	NO	•						
	5		event_timer_tpdo2	UINT16	RW	NO	•						
			transmit_pdo_parameter_tpdo3				•						
1802	0	RECORD	number_of_entries_tpdo3	UINT32	RO	NO	•						
	1		cob_id_used_by_pdo_tpdo3	UINT32	RO	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	Support					Unit
							All	IP	PP	PV	PT	НМ	
	2		transmission_type_tpdo3	UINT8	RW	NO	•						
	3		inhibit_time_tpdo3	UINT16	RW	NO	•						
	5		event_timer_tpdo3	UINT16	RW	NO	•						
			transmit_pdo_parameter_tpdo4				•						
	0		number_of_entries_tpdo4	UINT32	RO	NO	•						
1803	1	RECORD	cob_id_used_by_pdo_tpdo4	UINT32	RO	NO	•						
1005	2	RECORD	transmission_type_tpdo4	UINT8	RW	NO	•						
	3		inhibit_time_tpdo4	UINT16	RW	NO	•						
	5		event_timer_tpdo4	UINT16	RW	NO	•						
			transmit_pdo_mapping_tpdo1				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A00	1	RECORD	first_mapped_object_tpdo1	UINT32	RW	NO	•						
TAUU	2	RECORD	second_mapped_object_tpdo1	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo1	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo1	UINT32	RW	NO	•						
			transmit_pdo_mapping_tpdo2				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A01	1	RECORD	first_mapped_object_tpdo2	UINT32	RW	NO	•						
IAUI	2	RECORD	second_mapped_object_tpdo2	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo2	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo2	UINT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
			transmit_pdo_mapping_tpdo3				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A02	1	RECORD	first_mapped_object_tpdo3	UINT32	RW	NO	•						
TAUZ	2	RECORD	second_mapped_object_tpdo3	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo3	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo3	UINT32	RW	NO	•						
			transmit_pdo_mapping_tpdo4				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A03	1	RECORD	first_mapped_object_tpdo4	UINT32	RW	NO	•						
TAUS	2	RECORD	second_mapped_object_tpdo4	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo4	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo4	UINT32	RW	NO	•						
			mask_tpdo1				•						
2000	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2000	1	RECORD	mask1_tpdo1	UINT32	RW	NO	•						
	2		mask2_tpdo1	UINT32	RW	NO	•						
			mask_tpdo2				•						
2001	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2001	1		mask1_tpdo2	UINT32	RW	NO	•						
	2		mask2_tpdo2	UINT32	RW	NO	•						
2002		RECORD	mask_tpdo3				•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
	0		number_of_entries	UINT8	RO	NO	•						
	1		mask1_tpdo3	UINT32	RW	NO	•						
	2		mask2_tpdo3	UINT32	RW	NO	•						
			mask_tpdo4				•						
2002	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2003	1		mask1_tpdo4	UINT32	RW	NO	•						
	2		mask2_tpdo4	UINT32	RW	NO	•						
2105	0	VAR	sync_time_period	UINT32	RW	NO	•						
30A5		VAR	SinglePos	UINT32	RO	YES	•						pulse
30A6		VAR	MultiPos	UINT32	RO	YES	•						
30A7		VAR	HomingStatus	UINT16	RW	NO	•						
30A8		VAR	ExtEncPosition	INT32	RO	YES	•						pulse
30A9		VAR	MultiPosAfterProc	UINT32	RO	YES	•						
30AA		VAR	ActualPosAfterProc	UINT32	RO	YES	•						pulse
3164		VAR	Pn000 Basic Function Selections 0	INT32	RW	NO	•						
3165		VAR	Pn001 Basic Function Selections	INT32	RW	NO	•						
3166		VAR	Pn002 Application Function Selections 2	INT32	RW	NO	•						
3167		VAR	Pn003 Application Function Selections 3	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	1
3168		VAR	Pn004 Application Function Selections 4	INT32	RW	NO	•						
3169		VAR	Pn005 Application Function Selections 5	INT32	RW	NO	•						
316A		VAR	Pn006 Application Function Selections 6	INT32	RW	NO	•						
316B		VAR	Pn007 Application Function Selections 7	INT32	RW	NO	•						
316C		VAR	Pn008 Power On Options	INT32	RW	NO	•						
316D		VAR	Pn009 Application Function Selections 9	INT32	RW	NO	•						
31C8		VAR	Pn100 Tuning Function Selection	INT32	RW	NO	•						
31C9		VAR	Pn101 Response Frequency Level	INT32	RW	NO	•						Hz
31CA		VAR	Pn102 Speed Loop Gain	INT32	RW	NO	•						rad/s
31CB		VAR	Pn103 Speed Loop Integral Time	INT32	RW	NO	•						0.1ms
31CC		VAR	Pn104 Position Loop Gain	INT32	RW	NO	•						1/s
31CD		VAR	Pn105 Torque Reference Filter Time Constant	INT32	RW	NO	•						0.01ms
31CE		VAR	Pn106 Load Inertia Percentage	INT32	RW	NO	•						%
31CF		VAR	Pn107 Second Speed Loop Gain	INT32	RW	NO	•						rad/s
31D0		VAR	Pn108 Second Speed Loop Integral Time	INT32	RW	NO	•						0.1ms

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
31D1		VAR	Pn109 Second Position Loop Gain	INT32	RW	NO	•						1/s
31D2		VAR	Pn110 Second Torque Reference Filter Time Constant	INT32	RW	NO	•						0.01ms
31D4		VAR	Pn112 Speed Feedforward	INT32	RW	NO	•						%
31D5		VAR	Pn113 Speed Feedforward Filter Time Constant	INT32	RW	NO	•						0.1ms
31D6		VAR	Pn114 Torque Feedforward	INT32	RW	NO	•						%
31D7		VAR	Pn115 Torque Feedforward Filter Time Constant	INT32	RW	NO	•						0.1ms
31D8		VAR	Pn116 P/PI Switching Conditions	INT32	RW	NO	•						
31D9		VAR	Pn117 P/PI Switching Level for Torque Reference	INT32	RW	NO	•						%
31DA		VAR	Pn118 P/PI Switching Level for Position Deviation	INT32	RW	NO	•						pulse
31DB		VAR	Pn119 P/PI Switching Level for Acceleration	INT32	RW	NO	•						10rmp/s
31DC		VAR	Pn120 P/PI Switching Level for Speed Reference	INT32	RW	NO	•						rpm
31DD		VAR	Pn121 Gain Switching Conditions	INT32	RW	NO	•						
31DE		VAR	Pn122 Gain Switching Waiting Time	INT32	RW	NO	•						0.1ms
31DF		VAR	Pn123 Gain Switching Level	INT32	RW	NO	•						
31E0		VAR	Pn124 Speed Level	INT32	RW	NO	•						rpm

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	oort					Unit
							All	IP	PP	PV	PT	НМ	
31E1		VAR	Pn125 Position Gain Switching Time	INT32	RW	NO	•						0.1ms
31E2		VAR	Pn126 Gain Switching Hysteresis	INT32	RW	NO	•						
31E3		VAR	Pn127 Speed Measurement Filter at Low Speed	INT32	RW	NO	•						1 cycle
31E6		VAR	Pn130 Friction Compensation Gain	INT32	RW	NO	•						0.1%Tn
31E7		VAR	Pn131 Friction Compensation Speed Hysteresis	INT32	RW	NO	•						rpm
31E8		VAR	Pn132 Friction Damping Proportion	INT32	RW	NO	•						0.1%Tn/1000rpm
31EB		VAR	Pn135 Speed Feedback Filter Time	INT32	RW	NO	•						0.01ms
31FA		VAR	Pn150 Control-Related Selections	INT32	RW	NO	•						
31FB		VAR	Pn151 Model Following Control Gain	INT32	RW	NO	•						1/s
31FC		VAR	Pn152 Model Following Control Gain Correction	INT32	RW	NO	•						%
31FD		VAR	Pn153 Model Following Control Speed Feedforward Coefficient	INT32	RW	NO	•						%
31FE		VAR	Pn154 Model Following Control Torque Feedforward Coefficient	INT32	RW	NO	•						%
31FF		VAR	Pn155 Anti-Resonance Frequency for Jitter Suppression	INT32	RW	NO	•						0.1Hz
3200		VAR	Pn156 Filter Time Constant for Jitter Suppression	INT32	RW	NO	•						0.1ms

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3201		VAR	Pn157 Low frequency jitter suppression speed feedforward compensation amount limiting	INT32	RW	NO	•						rpm
3204		VAR	Pn160 Load Disturbance Compensation	INT32	RW	NO	•						%
3205		VAR	Pn161 Load Disturbance Detection Gain	INT32	RW	NO	•						Hz
3206		VAR	Pn162 Use Estimated Speed	INT32	RW	NO	•						
3208		VAR	Pn164 PJOG0 Rotation Number	INT32	RW	NO	•						rev
3209		VAR	Pn165 PJOG0 Rotation Speed	INT32	RW	NO	•						rpm
320A		VAR	Pn166 PJOG0 Acceleration/Deceleration Time	INT32	RW	NO	•						ms
320B		VAR	Pn167 PJOG0 Stop Time	INT32	RW	NO							ms
320C		VAR	Pn168 PJOG1 Rotation Number	INT32	RW	NO	•						rev
320D		VAR	Pn169 PJOG1 Rotation Speed	INT32	RW	NO	•						rpm
320E		VAR	Pn170 PJOG1 Acceleration/Deceleration Time	INT32	RW	NO	•						ms
320F		VAR	Pn171 PJOG1 Stop Time	INT32	RW	NO	•						ms
3210		VAR	Pn172 Moment of Inertia Calculation Amount	INT32	RW	NO	•						
3211		VAR	Pn173 Vibration Suppression Frequency at Intermediate- Frequency	INT32	RW	NO	•						Hz
3212		VAR	Pn174 Vibration Suppression Bandwidth Adjustment at Intermediate-Frequency	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
3213		VAR	Pn175 Vibration Suppression Damping Gain at Intermediate- Frequency	INT32	RW	NO	•						
3214		VAR	Pn176 Vibration Suppression Lowpass Filter Time at Intermediate-Frequency	INT32	RW	NO	•						0.1ms
3215		VAR	Pn177 Vibration Suppression Highpass Filter Time at Intermediate-Frequency	INT32	RW	NO	•						0.1ms
3216		VAR	Pn178 Vibration Suppression Proportional Attenuation Gain at Intermediate-Frequency	INT32	RW	NO	•						
3217		VAR	Pn179 Vibration Amplitude Detection Level	INT32	RW	NO	•						
3218		VAR	Pn180 Vibration Frequency Detection Level	INT32	RW	NO	•						Hz
3219		VAR	Pn181 Notch Filter Frequency 1	INT32	RW	NO	•						Hz
321A		VAR	Pn182 Notch Filter Depth 1	INT32	RW	NO	•						
321B		VAR	Pn183 Notch Filter Width 1	INT32	RW	NO	•						
321C		VAR	Pn184 Notch Filter Frequency 2	INT32	RW	NO	•						Hz
321D		VAR	Pn185 Notch Filter Depth 2	INT32	RW	NO	•						
321E		VAR	Pn186 Notch Filter Width 2	INT32	RW	NO	•						
321F		VAR	Pn187 Notch Filter Frequency 3	INT32	RW	NO	•						Hz
3220		VAR	Pn188 Notch Filter Depth 3	INT32	RW	NO	•						
3221		VAR	Pn189 Notch Filter Width 3	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3222		VAR	Pn190 Automatic Vibration Suppression State	INT32	RW	NO	•						
3223		VAR	Pn191 Vibration Frequency Detection Level	INT32	RW	NO	•						
322C		VAR	Pn200 Pulse Numbers for PG Frequency Division	INT32	RW	NO	•						pulse
3233		VAR	Pn207 Homing locked-rotor torque	INT32	RW	NO	•						%Tn
3234		VAR	Pn208 Homing locked-rotor time	INT32	RW	NO	•						1 cycle
3236		VAR	Pn210 2nd Encoder Functions 1	INT32	RW	NO	•						
3237		VAR	Pn211 2nd Encoder Functions 2	INT32	RW	NO	•						
3238		VAR	Pn212 2nd Encoder Resolution	INT32	RW	NO	•						pulse
3239		VAR	Pn213 Position Deviation Overflow Warning Level at Fully Closed-loop Control	INT32	RW	NO	•						pulse
323A		VAR	Pn214 Position Deviation Reset Level at Fully Closed-loop Control	INT32	RW	NO	•						%
3245		VAR	Pn225 Encoder delay compensation mode	INT32	RW	NO	•						
3246		VAR	Pn226 Encoder delay manual compensation value	INT32	RW	NO	•						10ns
3248		VAR	Pn228 User Defined Multi- Resolution	INT32	RW	NO	•						
3294		VAR	Pn304 Parameter Reference Speed	INT32	RW	NO	•						rpm

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
3295		VAR	Pn305 JOG Speed	INT32	RW	NO	•						rpm
3296		VAR	Pn306 Soft Start Acceleration Time	INT32	RW	NO	•						ms
3297		VAR	Pn307 Soft Start Deceleration Time	INT32	RW	NO	•						ms
3298		VAR	Pn308 Speed Feedback Filter Time Constant	INT32	RW	NO	•						ms
3299		VAR	Pn309 S-Curve Rise Time	INT32	RW	NO	•						ms
329A		VAR	Pn310 Speed Reference Curve Form	INT32	RW	NO	•						
329B		VAR	Pn311 S-Curve Selection	INT32	RW	NO	•						
32A7		VAR	Pn323 Overspeed Detection Level	INT32	RW	NO	•						rpm
32AF		VAR	Pn331 Touch Probe Signal Allocation	INT32	RW	NO	•						
32B0		VAR	Pn332 Touch Probe Filtering Time	INT32	RW	NO	•						10ns
32B1		VAR	Pn333 Touch Probe Singal Inverts	INT32	RW	NO	•						
32F5		VAR	Pn401 Forward Internal Torque Limit	INT32	RW	NO	•						%
32F6		VAR	Pn402 Reverse Internal Torque Limit	INT32	RW	NO	•						%
32F7		VAR	Pn403 Forward External Torque Limit	INT32	RW	NO	•						%

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	•
32F8		VAR	Pn404 Reverse External Torque Limit	INT32	RW	NO	•						%
32F9		VAR	Pn405 Reverse Brake Torque Limit	INT32	RW	NO	•						%
32FA		VAR	Pn406 Torque Limit at Undervoltage	INT32	RW	NO	•						%
32FB		VAR	Pn407 Release Time for Torque Limit at Undervoltage	INT32	RW	NO	•						ms
32FC		VAR	Pn408 Speed Limit during Torque Control	INT32	RW	NO	•						rpm
3358		VAR	Pn500 Positioning Completed Width	INT32	RW	NO	•						pulse
3359		VAR	Pn501 Speed Coincidence Signal Detection Width	INT32	RW	NO	•						rpm
335B		VAR	Pn503 Rotation Detection Speed	INT32	RW	NO	•						rpm
335C		VAR	Pn504 Deviation Counter Overflow Alarm	INT32	RW	NO	•						1 pulse
335D		VAR	Pn505 Servo ON Waiting Time	INT32	RW	NO	•						ms
335E		VAR	Pn506 Brake Reference-Servo OFF Delay Time	INT32	RW	NO	•						10ms
335F		VAR	Pn507 Brake Reference Waiting Speed	INT32	RW	NO	•						rpm
3360		VAR	Pn508 Brake Reference Waiting Time	INT32	RW	NO	•						10ms
3361		VAR	Pn509 Input Signal Allocations 1	INT32	RW	NO	•						
3362		VAR	Pn510 Input Signal Allocations 2	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3363		VAR	Pn511 Output Signal Allocations	INT32	RW	NO	•						
3364		VAR	Pn512 Input Contact Data (Low Bits) at Bus Control	INT32	RW	NO	•						
3365		VAR	Pn513 Input Contact Data (High Bit) at Bus Control	INT32	RW	NO	•						
3366		VAR	Pn514 Input Signals Filter Time	INT32	RW	NO	•						1 cycle
3367		VAR	Pn515 Alarm Signals Filter Time	INT32	RW	NO	•						2 cycle
3368		VAR	Pn516 Input Singal Inverts 1	INT32	RW	NO	•						
3369		VAR	Pn517 Input Singal Inverts 2	INT32	RW	NO	•						
336A		VAR	Pn518 Dynamic Brake Time	INT32	RW	NO	•						0.5ms
336B		VAR	Pn519 Serial Encoder Error Allowed Time	INT32	RW	NO	•						1 cycle
336C		VAR	Pn520 Positioning Completion Time	INT32	RW	NO	•						0.1ms
336D		VAR	Pn521 Alarm Masks 1	INT32	RW	NO	•						
3371		VAR	Pn525 Overload Alarm Level	INT32	RW	NO	•						%
3374		VAR	Pn528 Output Signal Inverts	INT32	RW	NO	•						
3375		VAR	Pn529 Torque Detection Signal Output Level	INT32	RW	NO	•						%
3376		VAR	Pn530 Torque Detection Signal Output Time	INT32	RW	NO	•						ms
3379		VAR	Pn533 Dynamic Brake Current Detection Level	INT32	RW	NO	•						mA

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	1
337A		VAR	Pn534 IPM Junction Temperature Detection Level	INT32	RW	NO	•						°C
337B		VAR	Pn535 Discharging Resistor Resistance	INT32	RW	NO	•						Ω
337C		VAR	Pn536 Discharging Resistor Power	INT32	RW	NO	•						w
337E		VAR	Pn538 Momentary Power Interruption Hold Time	INT32	RW	NO	•						1 cycle
337F		VAR	Pn539 Pumping Turn ON Delay Time	INT32	RW	NO	•						ms
3380		VAR	Pn540 Pumping Turn OFF Delay Time	INT32	RW	NO	•						ms
3381		VAR	Pn541 Motion Err Iqr Threshold	INT32	RW	NO	•						% In
3382		VAR	Pn542 Motion Err Acc Threshold	INT32	RW	NO	•						krpm/s
3423		VAR	Pn703 CAN baud	INT32	RW	NO	•						
3424		VAR	Pn704 Device Node Number	INT32	RW	NO	•						
3434		VAR	Pn720 Homing Mode	INT32	RW	NO	•						
3435		VAR	Pn721 Research Reference Point Speed	INT32	RW	NO	•						0.1rpm
3436		VAR	Pn722 Origin Research Speed	INT32	RW	NO	•						0.1rpm
3437		VAR	Pn723 Origin Research Acceleration	INT32	RW	NO	•						0.1r/m/s
3438		VAR	Pn724 Origin Return Offset Pulse	INT32	RW	NO	•						pulse

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3439		VAR	Pn725 Electronic Gear Ratio (Numerator)	INT32	RW	NO	•						
343A		VAR	Pn726 Electronic Gear Ratio (Denominator)	INT32	RW	NO	•						
3484		VAR	Pn800 Motor Applied Settings 1	INT32	RW	NO	•						
3485		VAR	Pn801 Motor Applied Settings 2	INT32	RW	NO	•						
3486		VAR	Pn802 Encoder Initial Value	INT32	RW	NO	•						
3488		VAR	Pn804 Motor Serials Selection	INT32	RW	NO	•						
3489		VAR	Pn805 Motor Module Selection	INT32	RW	NO	•						
348A		VAR	Pn806 Motor Voltage Class	INT32	RW	NO	•						
348B		VAR	Pn807 Motor Power	INT32	RW	NO	•						w
348C		VAR	Pn808 Motor Temperature Sensor Model	INT32	RW	NO	•						
348D		VAR	Pn809 Motor Derating Factor	INT32	RW	NO	•						0.01Tn
348E		VAR	Pn810 Motor Rated Torque	INT32	RW	NO	•						0.01Nm
348F		VAR	Pn811 Motor Maximum Torque	INT32	RW	NO	•						0.01Nm
3490		VAR	Pn812 Motor Rated Current	INT32	RW	NO	•						0.1A
3491		VAR	Pn813 Motor Maximum Curren	INT32	RW	NO	•						0.1A
3492		VAR	Pn814 Motor Rated Speed	INT32	RW	NO	•						rpm
3493		VAR	Pn815 Motor Maximum Speed	INT32	RW	NO	•						rpm
3494		VAR	Pn816 Motor Ultimate Speed	INT32	RW	NO	•						rpm
3495		VAR	Pn817 a0*10000	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3496		VAR	Pn818 a1*10000	INT32	RW	NO	•						
3497		VAR	Pn819 a2*10000	INT32	RW	NO	•						
3498		VAR	Pn820 a3*10000	INT32	RW	NO	•						
3499		VAR	Pn821 a4*10000	INT32	RW	NO	•						
349A		VAR	Pn822 b0*10000	INT32	RW	NO	•						
349B		VAR	Pn823 b1*10000	INT32	RW	NO	•						
349C		VAR	Pn824 b2*10000	INT32	RW	NO	•						
349D		VAR	Pn825 b3*10000	INT32	RW	NO	•						
349E		VAR	Pn826 b4*10000	INT32	RW	NO	•						
349F		VAR	Pn827 Opposing EMF Factor (Ke)	INT32	RW	NO	•						0.01V/Krpm
34A0		VAR	Pn828 Phase Resistance (Rs)	INT32	RW	NO	•						0.001Ω
34A1		VAR	Pn829 Ld	INT32	RW	NO	•						0.1mH
34A2		VAR	Pn830 Lq	INT32	RW	NO	•						0.1mH
34A3		VAR	Pn831 Moment of Inertia for Motor	INT32	RW	NO	•						1e-8Kgm^2
34A4		VAR	Pn832 Pole Number	INT32	RW	NO	•						
34A5		VAR	Pn833 Electrical Time Constant (te)	INT32	RW	NO	•						0.01ms
34A6		VAR	Pn834 Mechanical Time Constant (tm)	INT32	RW	NO	•						0.01ms
34A7		VAR	Pn835 Thermal Time Constant (th)	INT32	RW	NO	•						0.01ms

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
34A8		VAR	Pn836 Thermal Model Parameters Tp[0]*10000	INT32	RW	NO	•						
34A9		VAR	Pn837 Thermal Model Parameters Tp[1]*10000	INT32	RW	NO	•						
34AA		VAR	Pn838 Thermal Model Parameters Tp[2]*10000	INT32	RW	NO	•						
34AB		VAR	Pn839 Thermal Model Parameters Tp[3]*10000	INT32	RW	NO	•						
34AC		VAR	Pn840 Thermal Model Parameters Tp[4]*10000	INT32	RW	NO	•						
34AD		VAR	Pn841 Motor Overload Curve Coefficient k[0]*10000	INT32	RW	NO	•						
34AE		VAR	Pn842 Motor Overload Curve Coefficient k[1]*10000	INT32	RW	NO	•						
34AF		VAR	Pn843 Motor Overload Curve Coefficient k[2]*10000	INT32	RW	NO	•						
34B0		VAR	Pn844 Motor Overload Curve Coefficient k[3]*10000	INT32	RW	NO	•						
34B1		VAR	Pn845 Motor Overload Curve Coefficient k[4]*10000	INT32	RW	NO	•						
34CF		VAR	Pn875 Application Function Select	INT32	RW	NO	•						
34D1		VAR	Pn877 Encoder Protocol Selection	INT32	RW	NO	•						
34D2		VAR	Pn878 Encoder Type Selection	INT32	RW	NO	•						
34D3		VAR	Pn879 Encoder Actual Resolution	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
34D4		VAR	Pn880 Encoder Resolution for Program Using	INT32	RW	NO	•						
34D5		VAR	Pn881 Encoder Resolution for Multi-turn Data	INT32	RW	NO	•						
34D9		VAR	Pn885 Servodrive Applied Setting	INT32	RW	NO	•						
34E3		VAR	Pn895 Alarm Masks 7	INT32	RW	NO	•						
34F6		VAR	Pn914 Asynchronous Drive Amplitude (Uq)	INT32	RW	NO	•						‰
34F7		VAR	Pn915 Asynchronous Drive Frequency	INT32	RW	NO	•						
34F8		VAR	Pn916 Current Loop Bandwidth	INT32	RW	NO	•						Hz
34F9		VAR	Pn917 Dead Zone Compensation Percentage	INT32	RW	NO	•						%
34FC		VAR	Pn920 Function Selection for Test	INT32	RW	NO	•						
34FD		VAR	Pn921 Test Mode Settings	INT32	RW	NO	•						
34FE		VAR	Pn922 Current loop step test Id given percentage	INT32	RW	NO	•						%
34FF		VAR	Pn923 Iq Given Percentage for Current Loop Step Test	INT32	RW	NO	•						%
3501		VAR	Pn925 Current loop frequency response test Iq given offset percentage	INT32	RW	NO	•						%
3502		VAR	Pn926 Current loop frequency response test Iq given amplitude percentage	INT32	RW	NO	•						%

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
3504		VAR	Pn928 Speed loop frequency response test speed given offset	INT32	RW	NO	•						rpm
3505		VAR	Pn929 Speed loop frequency response test speed given amplitude	INT32	RW	NO	•						rpm
3507		VAR	Pn931 DA output voltage amplitude in frequency response test mode	INT32	RW	NO	•						0.1V
3508		VAR	Pn932 Sweep frequency	INT32	RW	NO	•						Hz
350B		VAR	Pn935 One Volt Corresponding Pulse Number	INT32	RW	NO	•						
350C		VAR	Pn936 Output Voltage Scale Factor in Position Loop Frequency Response Test	INT32	RW	NO	•						
350D		VAR	Pn937 Output Voltage Offset in Position Loop Frequency Response Test	INT32	RW	NO	•						
350F		VAR	Pn939 STO Function Selection	INT32	RW	NO	•						
3510		VAR	Pn940 Interrupt Cycle Time	INT32	RW	NO	•						
3511		VAR	Pn941 MXL Motor Flux- weakening Selection	INT32	RW	NO	•						
3512		VAR	Pn942 Flux-weakening PI Regulator (kp)	INT32	RW	NO	•						0.01
3513		VAR	Pn943 Flux-weakening PI Regulator (ki)	INT32	RW	NO	•						0.1
3514		VAR	Pn944 Mechanical Analyzer Order	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
351A		VAR	Pn950 Overmodulation Selection	INT32	RW	NO	•						
351B		VAR	Pn951 Tz Selection	INT32	RW	NO	•						
351C		VAR	Pn952 Amplifying Tmax, Pn401/Pn402	INT32	RW	NO	•						0.01
351D		VAR	Pn953 Motor Amplified (Imax)	INT32	RW	NO	•						0.01
351E		VAR	Pn954 Alarm Self-test Selection	INT32	RW	NO	•						
351F		VAR	Pn955 Bus Voltage Correction	INT32	RW	NO	•						V
3521		VAR	Pn957 ePWM forced synchronization enable bit in EC mode Validate After Restart	INT32	RW	NO	•						
3524		VAR	Pn960 Alarm Masks 1	INT32	RW	NO	•						
3525		VAR	Pn961 Alarm Masks 2	INT32	RW	NO	•						
3526		VAR	Pn962 Alarm Masks 3	INT32	RW	NO	•						
3527		VAR	Pn963 Alarm Masks 4	INT32	RW	NO	•						
3528		VAR	Pn964 Alarm Masks 5	INT32	RW	NO	•						
3529		VAR	Pn965 Alarm Masks 6	INT32	RW	NO	•						
			EncAlmClrVar				•						
2/05	0		number_of_entries	UINT8	RO	NO	•						
3685	1	ARRAY	ClrAllEncAlm	UINT16	RW	NO	•						
	2		ClrMultiEncAlm	UINT16	RW	NO	•						
603F		VAR	Error_code	UINT16	RO	YES	•						
6040		VAR	controlword	UINT16	RW	YES	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
6041		VAR	statusword	UINT16	RO	YES	•						
605A		VAR	quick_stop_option_code	INT16	RW	NO	•						
605B		VAR	shutdown_option_code	INT16	RW	NO	•						
605C		VAR	disable_operation_option_code	INT16	RW	NO	•						
605D		VAR	stop_option_code	INT16	RW	NO	•						
605E		VAR	fault_reaction_option_code	INT16	RW	NO	•						
6060		VAR	modes_of_operation	UINT8	RW	YES	•						
6061		VAR	modes_of_operation_display	UINT8	RO	YES	•						
6062		VAR	position_demand_value	INT32	RO	YES			•				position units
6063		VAR	position_actual_value*	INT32	RO	YES			•				inc
6064		VAR	position_actual_value	INT32	RO	YES		•	•		•	•	position units
6065		VAR	following_error_window	UINT32	RW	YES			•				position units
6066		VAR	following_error_time_out	UINT16	RW	YES			•				ms
6067		VAR	position_window	UINT32	RW	YES			•				position units
6068		VAR	position_window_time	UINT16	RW	YES			•				ms
6069		VAR	velocity_sensor_actual_value	INT32	RO	YES				•			speed units
606B		VAR	velocity_demand_value	INT32	RO	YES				•			speed units
606C		VAR	velocity_actual_value	INT32	RO	YES	•						speed units
606D		VAR	velocity_window	UINT16	RW	YES				•			speed units
606E		VAR	velocity_window_time	UINT16	RW	YES				•			ms
606F		VAR	velocity_threshold	UINT16	RW	YES				•			speed units

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	
6070		VAR	velocity_threshold_time	UINT16	RW	YES				•			ms
6071		VAR	target_torque	INT16	RW	YES					•		0.1% Tn
6072		VAR	Max_torque	UINT16	RW	YES					•		0.1% Tn
6074		VAR	torque_demand_value	INT16	RO	YES					•		0.1% Tn
6077		VAR	torque_actual_value	INT32	RO	YES		•	•		•		0.1% Tn
6078		VAR	Current actual value	INT16	RO	YES		•	•		•		0.1%ln
607A		VAR	target_position	INT32	RW	YES			•				position units
607C		VAR	home_offset	INT32	RW	YES	•						position units
			Software_position_limit						•				
607D	0	ARRAY	number_of_entries	UINT8	RW	NO			•				
007D	1		min_soft_position_limit	INT32	RW	NO			•				position units
	2		max_soft_position_limit	INT32	RW	NO			•				position units
607E		VAR	polarity	UINT8	RW	YES	•						position units
607F		VAR	Max_profile_velocity	UINT32	RW	YES			•	•			speed units
6080		VAR	Max motor speed	UINT32	RW	YES			•				rpm
6081		VAR	profile_velocity	UINT32	RW	YES			•				speed units
6082		VAR	end_velocity	UINT32	RW	YES			•				speed units
6083		VAR	profile_acceleration	UINT32	RW	YES			•	•			acceleration units
6084		VAR	profile_deceleration	UINT32	RW	YES			•	•			acceleration units

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	HM	1
6085		VAR	quick_stop_deceleration	UINT32	RW	YES			•	•			acceleration units
6086		VAR	motion_profile_type	INT16	RW	YES			•				
6087		VAR	torque_slope	UINT32	RW	YES					•		0.1%Tn/S
			position_factor				•		•		•	•	
6093	0	ARRAY	number_of_entries	UINT32	RW	NO	•		•		•	•	
0093	1	ΑΚΚΑΙ	numerator	UINT32	RW	NO	•		•		•	•	
	2		divisor	UINT32	RW	NO	•		•		•	•	
			velocity_encoder_factor				•						
6094	0	ARRAY	number_of_entries	UINT32	RW	NO	•						
0094	1	ΑΚΚΑΙ	numerator	UINT32	RW	NO	•						
	2		divisor	UINT32	RW	NO	•						
			acceleration_factor				•						
6097	0		number_of_entries	UINT8	RW	NO	•						
0097	1	ARRAY	numerator	UINT32	RW	NO	•						
	2		divisor	UINT32	RW	NO	•						
6098		VAR	homing_method	INT8	RW	YES						•	
			homing_speeds									•	
(000	0		number_of_entries	UINT8	RO	NO						•	
6099	1	ARRAY	speed_during_search_for_switch	UINT32	RW	YES						•	speed units
	2]	speed_during_search_for_zero	UINT32	RW	YES						•	speed units

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
609A		VAR	homing_acceleration	UINT32	RW	YES						•	0.1rpm/s
			profile_jerk					•	•				
60A4	0	ARRAY	number_of_entries	UINT8	RO	NO		•	•				
	1		profile_jerk1	UINT32	RW	YES		•	•				pulse/s/s/125us
60B1		VAR	VelocityOffset	INT32	RW	YES	•						speed units
60B2		VAR	TorqueOffset	INT16	RW	YES	•						0.1%Tn
60B8		VAR	Touch Probe Function	UINT16	RW	YES	•						
60B9		VAR	Touch Probe Status	UINT16	RO	YES	•						
60BA		VAR	Touch Probe Pos1 Pos Value	INT32	RO	YES	•						pulse
60BB		VAR	Touch Probe Pos1 Neg Value	INT32	RO	YES	•						pulse
60BC		VAR	Touch Probe Pos2 Pos Value	INT32	RO	YES	•						pulse
60BD		VAR	Touch Probe Pos2 Neg Value	INT32	RO	YES	•						pulse
60C0		VAR	Interpolation sub mode select	INT16	RW	NO	•						
			Interpolation data record										
60C1	0	ARRAY	number_of_entries	UINT8	RO	NO		•					
0001	1		Interpolation data record1	INT32	RW	YES		•					pulse
	2		Interpolation data record2	INT32	RW	NO		•					pulse
			Interpolation_Time										
60C2	0	ARRAY	number_of_entries	UINT8	RO	NO		•					
0002	1		Interpolation_Time_Unit	UINT8	RW	NO		•					
	2		Interpolation_Time_Index	INT8	RW	NO		•					

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
60C5		VAR	Max_acceleration	UINT32	RW	YES	•						0.1rpm/s
60C6		VAR	Max_deceleration	UINT32	RW	YES	•						0.1rpm/s
60E0		VAR	PosTorLimit	UINT16	RW	YES	•						%0.1Tn
60E1		VAR	NegTorLimit	UINT16	RW	YES	•						%0.1Tn
60F4		VAR	Following_error_actual_value	INT32	RO	YES		•					pulse
60FA		VAR	control_effort	INT32	RO	YES		•				•	
60FC		VAR	position_demand_value*	INT32	RO	YES		•				•	pulse
60FD		VAR	digital_inputs	UINT32	RO	YES	•						
			digital_outputs										
	0		number_of_entries	UINT8	RO	NO	•						
60FE	1	ARRAY	physical_outputs	UINT32	RW	YES	•						
	2]	bit_mask	UINT32	RW	NO	•						
60FF		VAR	target_velocity	INT32	RW	YES				•			speed units
6502		VAR	Supported drive modes	UINT32	RO	NO	•						

Revision History

Date	Version	Revised Contents
September 2022	V0.01	Initial release (DRAFT)
October 2023	V1.00	Updated with formatting changes

Trio Motion Technology Limited

www.triomotion.uk